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ABSTRACT 

This study used remote sensing, Geographical Information System (GIS), the Quantum GIS Soil 

and Water Assessment Tool (QSWAT+) and Crop Water and Irrigation Requirements Program 

(CROPWAT) to assess the potential of rainwater harvesting (RWH) for sustaining small scale 

irrigated coffee farming in the Bigasha watershed of Isingiro District in South-western Uganda. 

The study further demonstrated the benefits of geospatial analysis of large areas where non-

spatially based methods have limitations by utilising the many capabilities and strengths found in 

the four tools selected above. 

Despite the irrigation potential assessment studies conducted in the Bigasha watershed in recent 

years, which found the soils in this area to be suitable for coffee farming, production of the crop has 

been hampered by recurrent drought conditions (Droogers et al., 2012).  Farmers were unable to 

implement irrigated coffee farming due to the lack of a reliable irrigation water source. Therefore, 

this study was carried out to assess the potential of RWH in the study area to supply the required 

irrigation water.  

To identify potential RWH sites in the Bigasha watershed, four RWH site suitability analysis 

criteria were used: topography (slope), soils, land use and rainfall and runoff depth.  Using ArcGIS 

10.7 software, the raster maps for the slope and soil feature layers for the study area were created. 

The study made use of three temporal land use land cover (LULC) maps of 1999, 2010 and 2022. 

These maps were created by a supervised classification method using Landsat 7 (ETM+), Landsat 

5 (TM) and Sentinel 2A (MSI) satellite imageries, acquired from the United States Geological 

Survey (USGS) and European Space Agency (ESA) databases.  

The QSWAT+ software interface was used to integrate the input datasets of aforementioned criteria 

layers and further simulate the surface runoff from the Bigasha watershed. Subsequently, 62, 125 

and 114 Hydrologic Response Units (HRUs), derived from the 1999, 2010 and 2022 LULC maps, 

respectively, were selected as potential RWH sites. The selected HRUs had the potential to 

generate an annual average surface runoff depth of at least 92 mm and require relatively small 

catchment area to harvest adequate amount of rainwater. The surface runoff volumes that could 

potentially be harvested from the three HRUs categories mentioned above were 1.61, 2.68 and 

1.39 million cubic meters (MCMs), respectively.  
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Finally, the computed annual average gross irrigation water requirement of the coffee crop was 

995 mm. This implies that the 1.39 MCM of rainwater in the Bigasha watershed that is currently 

potentially harvestable could irrigate up to 145 hectares (101.8 per cent) of small-scale coffee 

fields in the study area annually. The prediction accuracy of the Kagera river basin model was very 

good with NSE(R2) values of 0.81(0.82) for calibration and 0.87(0.88) for validation. The Kagera 

watershed model fitted parameters were further used to calibrate the Bigasha watershed model. 

This was done because the Bigasha is a sub-basin of Kagera and does not have its own gauged 

outlet.  

Key words: Coffee farming; Irrigation; RWH; remote sensing; GIS; QSWAT+; CROPWAT; 

Bigasha watershed  
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CHAPTER 1:  INTRODUCTION 

1.0 Background 

Globally, Uganda is ranked as the eighth largest coffee producer, accounting for over 31 per cent 

of the total coffee exports from Africa, making it the second largest producer in Africa after 

Ethiopia (Miito & Banadda, 2017; UCDA, 2019b, 2019c; Nalunga, 2021). In 2019, Uganda’s 

coffee sector was already employing an estimated five million people (ICO, 2019). Coffee 

accounts for over 20 per cent of Uganda’s total foreign exchange earnings and 1.5 per cent of the 

annual gross domestic product (Jassogne et al., 2013; Akoyi & Maertens, 2018; UCDA, 2019b). 

During the coffee year 2021/2022, the country realised an export revenue of over US$ 741.03 

million (UCDA, 2022).  

The Uganda Coffee Development Authority noted that the global markets for both Robusta and 

Arabica coffee are sustainable and assured and that there is rising demand for good quality coffee. 

In 2020/2021, the global demand was 164.9 million bags which is projected to rise to 170.3 million 

bags by 2021/2022 (ICO, 2022). In 2021/2022, the global production is expected to be 167.2 

million bags, 3.1 million bags less than the demand (ICO, 2022). According to UCDA (2019b) and 

Nalunga (2021), Uganda still has an immense untapped coffee production potential that if 

leveraged alongside good field husbandry and management practices such as irrigation could 

bridge the above coffee production gap and earn coffee farmers over Uganda shillings (UGX) 10 

million per hectare per year. 

During the year 2012, the Nile Basin Initiative irrigation potential assessment project identified 

suitable soils for coffee farming in the Bigasha watershed, located in South-western Uganda. These 

soils were categorised as ferralsols with an average land productivity of 0.6 based on the  

normalised difference vegetation index (NDVI), a figure that is higher than Uganda’s average 

NDVI of 0.54 (Droogers et al., 2012). However, due to recurrent droughts in Bigasha, the area is 

characterised by low coffee production (MWE, 2019a; RoU, 2020c).  The severity of drought is 

more felt in the months of December to February and June to August (Nyasimi et al., 2016). During 

these periods rainfall is low, yet evapotranspiration rates are high, exposing coffee plants to 

excessive moisture stress and resulting in a reduction in crop yield (FAO, 2015). For instance in 

2017, drought contributed to nearly 60 per cent drop in coffee yield in Luwero district, one of the 

leading coffee growing districts in Uganda (MCDonnel, 2017). 
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The Food and Agricultural Organisation global information system on water resources and 

agricultural water management (FAO AQUASTAT) climatic statistics show that in the recent past 

(2010-2021), the annual average rainfall received in the joint sub-counties of Ngarama and 

Kashumba (where the Bigasha watershed is located) dropped to 960 mm. This is against a 

reference evapotranspiration rate of 1 347 mm, yet the coffee plant requires a minimum of 1 200 

mm of water annually for its proper growth (UCDA, 2019b; AQUASAT, 2022). Nyasimi et al. 

(2016) noted that the current adverse variations in Uganda’s climatic conditions would be 

exacerbated by increased frequency of occurrence and longevity of droughts, floods, etc., 

associated with global climate change. This was supported by MCDonnel (2017), who stressed 

that climate pressure could reduce potential coffee production by 50 per cent worldwide by 2050. 

Therefore, adoption of irrigation by coffee farmers from the Bigasha watershed becomes 

paramount for successful coffee growing in this area. However, as pointed out by Droogers et al. 

(2012), the major impediment  to irrigation practice in the Bigasha watershed is the lack of a 

reliable irrigation water source. There are two water sources adjacent to the watershed, namely, 

Lake Nakivale, which is located 20 kilometers away and would thus require substantial 

investments to convey water for irrigation and the Kagera river, which is a trans-boundary 

watercourse between Uganda, Tanzania, Burundi and Rwanda and hence requires formal approval 

from the Kagera Basin Organisation (KBO) to abstract water (Kagwanja, 2007).  

Numerous efforts to address the water scarcity in the Bigasha watershed have been rendered by 

various development partners. This is evidenced by the construction of a total of 33 currently 

functional shallow wells, 32 deep boreholes, 1 019 rooftop rainwater harvesting tanks, 3 valley 

tanks, 3 protected springs and 61 piped water systems across the two sub-counties of Ngarama and 

Kashumba (MWE, 2019b, 2020a, 2022). However, most of these water sources are seasonal and 

are characterised by considerably low storage capacities. They often dry up at the onset of the dry 

season leaving only a few permanent sources that cannot even supply these sub-counties’ two top 

priority demands which are domestic supply and livestock watering (RoU, 2020b). A case in point 

is Ngarama sub-county where only 48 per cent of the sub-county’s 44 364 people have access to 

potable water throughout the year, a figure that is far below the national target of 66 per cent 

(MWE, 2019b, 2022). The question is, “How then shall irrigated coffee farming be fostered in the 

Bigasha watershed?”. 
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In situ and/or ex situ rainwater harvesting (RWH), which is the collection and storage of local 

surface runoff, could potentially provide irrigation water for the small-scale coffee farmers in the 

Bigasha watershed. To harvest rainwater, a variety of locally known engineered and cost-effective 

techniques and structures could be used (Mugerwa, 2007; Stanley et al., 2020). The adoption of 

this prehistoric technology for agricultural production has become one of the indispensable 

adaptation strategies to the current adverse impacts of the global climate change (Kiggundu et al., 

2018; RoU, 2020a). 

Moreover, evidence of its successful application in coffee production has been found in many 

prominent coffee-producing countries, such as Brazil, Vietnam, Indonesia, Ethiopia, among others 

(Thao et al., 2019; Junqueira et al., 2020; Prijono & Sidauruk, 2020). Several benefits have been 

derived from rainwater harvesting for coffee farming among which include: protecting the coffee 

fields against soil erosion, providing water for irrigation and washing of pulped coffee, increasing 

soil moisture storage in coffee fields and above all improving the quality of coffee yields 

(Junqueira et al., 2020). For example, a study conducted by Adane & Bewket (2021) in Southern 

Ethiopia found that RWH can increase coffee yield by up to 70 per cent.   

Similar findings have been reported from studies conducted in different coffee-growing regions of 

Uganda’s neighboring countries, namely, Kenya, Tanzania and Rwanda (Wangui, 2012; Msuya, 

2013; Hakorimana & Akcaoz, 2019). In Uganda, in-situ rainwater harvesting practices such as 

micro-pits, semi-circular bunds, Fanya juu bunds and soak away pits are the most commonly used 

for coffee farming (Kiggundu et al., 2018; Zziwa et al., 2018; Stanley et al., 2020). Studies 

conducted in five of Uganda’s potential coffee growing districts, namely, Masaka, Rakai, Ibanda, 

Hoima and Kamwenge, found that RWH technology has the potential to sustain coffee production 

in the country (Kisekka et al., 2018; Zziwa et al., 2018; Stanley et al., 2020). A study conducted 

by Kisekka et al. (2018) in Ibanda, for instance, found that RWH can increase coffee yields by up 

to 66 per cent. Therefore, there is sufficient evidence of the feasibility of RWH for irrigation of 

coffee in water-stressed coffee-growing zones of Uganda, such as the Bigasha watershed. 
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1.1 Problem statement 

Irrigation is recognised globally as the most appropriate technology for enhancing crop tolerance 

to the detrimental impacts of drought (MAAIF, 2017). Regrettably, irrigation adoption by small 

scale  coffee farmers in the Bigasha watershed is still insignificant due to the lack of a reliable 

irrigation water source (Droogers et al., 2012). The approximated 960 mm of annual rainfall 

received in the Bigasha watershed could potentially be harvested to supply the required irrigation 

water (Nyirenda et al., 2021). Moreover, rain water harvesting may only supplement  20 per cent 

of the estimated 1 200 mm of water required annually to grow coffee in this area (UCDA, 2019b). 

However, there is limited  information and knowledge about potential rainwater harvesting sites 

with maximum runoff yield not only in the Bigasha watershed but Uganda at large (RoU, 2020a). 

Traditional non-spatially based methods for RWH site selection, such as surveying are indisputably 

the most accurate. However, these methods are time consuming and cost-ineffective,  limiting their 

application to only small areas (Mosase et al., 2017). Yet, there is low adoption of the spatially-

based RWH site suitability analysis methods across various agroecological zones of Uganda, 

possibly due to lack of knowledge of how to apply these methods, besides, scarcity of the input 

and validation data (Ammar et al., 2016; Kiggundu et al., 2018). Both multi-criteria analysis 

(MCA) and Artificial intelligence (AI) methods for RWH site selection are inapplicable in this 

study because they do not quantify the surface runoff from a watershed. 

Therefore, the adoption of simple, flexible and above all accurate methods, such as geospatial 

techniques (remote sensing and GIS) integrated with hydrological models, specifically the 

QSWAT+ model, to assess the potential of RWH for sustaining small scale irrigated coffee farming 

in the Bigasha watershed becomes necessary. According to Ammar et al. (2016), remote sensing 

can be used to derive accurate information on thematic layers used for RWH site selection, with 

high  spatial and temporal resolution, while GIS provides very useful tools for collecting, storing 

and analysing of both spatial and non-spatial data on the criteria layers. Similarly, hydrological 

modelling is a fundamental method for simulating surface runoff from any watershed, besides, 

providing a better understanding of the relationship between the upstream and downstream 

conditions of a watershed.  
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1.2 Significance of the study 

Rainwater harvesting technology is reported to offer several contributions to agricultural 

production. These include: (i) reduction of crop moisture stress and improved yields, (ii) recharge 

of the ground water aquifers, (iii) mitigation of the effects of drought and improved resilience to 

drought, (iv) increased access to water by farmers and their livestock, (v) reduction in soil erosion 

due to minimal surface runoff and (vi) expansion of the total irrigated land. However, the above-

mentioned benefits may not be realised if the RWH sites are not carefully selected. This study 

therefore provides resourceful knowledge and documentation about the effectiveness and 

reliability of the publicly accessible remote sensing, GIS and QSWAT+ model tools for rainwater 

harvesting site selection. 

It is interesting to note that only a few, if any, and if not none of the previous studies conducted in 

Uganda have used geospatial techniques and hydrological models to select rainwater harvesting 

sites. On that note, the methodology adopted in this study has the potential to be replicated in other 

water-stressed agroecological zones of Uganda. The findings of this study provide a solid 

foundation for future implementation of RWH technology in the Bigasha watershed for policy 

makers, water managers, planners and farmers. This is because all the necessary information, such 

as the potential rainwater harvesting sites, the quantity of rainwater harvestable, coffee crop 

irrigation water requirements and the total area of the coffee field irrigable, is available.  

The adoption of RWH technology is expected to improve coffee farmers’ access to irrigation water 

during drought seasons in the Bigasha watershed. As a result, the adoption of irrigation by 

interested small scale coffee farmers may be accelerated. This would therefore ensure sustainable 

crop production and productivity in this area. Farmers’ income may increase, livelihoods may 

improve and above all increased government revenue collections may be realised after the farmers 

sell their coffee produce. This is because coffee is so far the largest selling cash crop in Uganda.  

1.3 Objectives of the study 

1.3.1 Main Objective 

The main objective of the study was to assess the potential of rainwater harvesting for sustaining 

small scale irrigated coffee farming in the Bigasha watershed, Uganda. 
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1.3.2 Specific Objectives 

The main objective was met by the following specific objectives: 

1) To characterise rainwater harvesting sites in the Bigasha watershed. 

2) To map potential rainwater harvesting sites in the Bigasha watershed using remote sensing, 

GIS and the QSWAT+ model. 

3) To determine quantities of harvestable rainwater at potential sites for irrigated coffee 

growing. 

4) To estimate the total coffee production area that could be irrigated using this water. 

1.4 Research Questions 

The research questions that were answered at the end of this study for each of the objectives were: 

Main objective 

✓ Can rainwater harvesting sustain small scale irrigated coffee farming in the Bigasha 

watershed? 

Specific Objective One 

✓ What criteria was used for selecting potential sites for rainwater harvesting in the Bigasha 

watershed? 

Specific Objective Two 

✓ Which areas of the Bigasha watershed are best suited for rainwater harvesting and what is 

the total area of suitable sites? 

Specific Objective Three 

✓ What are the quantities of rainwater harvestable from the Bigasha watershed annually? 

Specific Objective Four 

✓ What is the irrigation water requirement for coffee grown in the Bigasha watershed?  

✓ What is the total area where coffee can be irrigated with the harvestable rainwater at the 

Bigasha watershed? 

1.5 Hypothesis 

The validity of the hypothesis tested in this study was: 

The Bigasha watershed has several potential sites for rainwater harvesting that if harnessed could 

provide enough water for small scale irrigated coffee farming. This could boost the production, 

productivity and profitability of coffee in the area. 
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Coffee growing and its challenges in Uganda 

Coffee is Uganda’s primary cash crop contributing between 20 to 30 per cent of the country’s 

annual export revenue and 1.5 per cent to the national GDP (Bunn et al., 2019; UCDA, 2019). The 

sector employs over 5 million people in Uganda (ICO, 2019). The majority (85 to 90 per cent) of 

Uganda’s coffee farmers are small holder farmers whose average farm sizes are less than half a 

hectare. Only 10 per cent of the farmers own approximately one hectare of coffee farm plots (Bunn 

et al., 2019).  

The coffee industry has registered a remarkable production growth from 2.03 million sixty kg bags, 

worth US$101 442 when the sector was liberalised in the year 1991/1992, to the current 6.72 

million sixty kg bags worth US$ 741.03 million. This was primarily due to the expansion in the 

coffee cultivated area but the actual annual production fluctuates (Verter et al., 2015; Akoyi & 

Maertens, 2018; UCDA, 2022). For example, in the coffee year 1995/1996, the total coffee export 

quantity stood at 4.15 million sixty kg bags. This drastically dropped 10 years later to 2 million 

sixty kg bags. The export again rose to 3.58 million sixty kg bags in the year 2012/2013 before 

dropping to 3.31 million sixty kg bags in the year 2015/2016 (UCDA, 2006, 2013, 2017). The 

possible reason for the fluctuating production of coffee especially in the South-western parts of 

Uganda include: recurrent droughts, pest and disease outbreaks and aged coffee trees which are 

now less productive (Mukasa et al., 2020; UCDA, 2019c, 2022). 

To maintain high coffee production, the adoption of irrigation is paramount in areas such as 

Bigasha if Uganda’s coffee industry is to achieve its planned four-fold increase in production by 

2025, as outlined  in the  Coffee 2025 Roadmap (Bunn et al., 2019). This is also stipulated in the 

Government of Uganda’s third National Development Plan (NDP III) and Vision 2040 document 

(Bunn et al., 2019). 

2.2 Irrigation development in Uganda: Constraints and Opportunities 

Irrigation farming has been practiced in Uganda for over 120 years (Nakawuka et al., 2018). 

Unfortunately, to date, only 2.5 per cent of the country’s 3.03 million hectares of irrigable land is 

irrigated despite the numerous crop losses that the country has continued to suffer due to recurrent 

droughts (Wanyama et al., 2017; Mukasa et al., 2020 Ssenyimba et al., 2020). In 2010, drought 

accounted for 38 and 36 per cent losses in Uganda’s beans and maize production, respectively. 
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While in 2014, the country recorded 2.8 million normalised UGX (8 per cent) drop on its annual 

GDP (MAAIF, 2017). 

With regards to coffee farming, the ICO (2019) report show that only 0.1 per cent of Uganda’s 353 

907 hectares of coffee fields are irrigated. Yet  observations from irrigation farming in some parts 

of Uganda and beyond, show that irrigation is capable of mitigating droughts and increase crop 

yield by up to five times (MAAIF, 2017; Kimera et al., 2018). Generally, the assurance of receiving 

sufficient rains to sustain two cropping seasons under bimodal rainfall regimes has contributed to 

the low uptake of irrigation by Uganda’s farmers (MAAIF, 2017). A major shift in the country’s 

irrigation development was realised after the Uganda national irrigation policy was drafted in 

2017, that set out priorities and strategies for irrigation development. This has so far  seen the 

construction of about four medium scale and fifty small scale irrigation schemes across different 

parts of the country by various development partners (MAAIF, 2017; Sridharan et al., 2019; MWE, 

2020).  

From the technical point of view, Wanyama et al. (2017) identified inadequate access to water for 

irrigation, land tenure issues, economic aspects of irrigation and inadequate national irrigation 

capacity as the major hindrances to irrigation development in Uganda. Approximately 79 per cent 

of irrigated land in Uganda is under traditional irrigation especially around swampy areas (Ghanem 

et al., 2020). However, such systems could not be replicated in areas with no reliable water source 

which explains why the whole Isingiro district has no irrigation scheme, except the ongoing 

Kubuyanda irrigation scheme development project (MWE & MAAIF, 2020).  

In this regard, the expansion of water for crop irrigation in water scarce areas such as Isingiro 

becomes essential if the Government of Uganda is to achieve its target of transforming the 

country’s agriculture from subsistence to commercial agriculture through mechanization and 

irrigation (MAAIF, 2017; Bettili et al., 2019). This is equally emphasised in Uganda’s national 

irrigation policy document, the NDP (II & III) and Vision 2040 (MAAIF, 2017). In the Uganda 

national irrigation policy, two strategic interventions specifically speak to the adoption of rainwater 

harvesting as a measure to augment water for production storage capacity in Uganda’s agricultural 

sector (MAAIF, 2017). This is already incorporated in the ongoing irrigation for climate resilience 

project (ICRP), whose primary goal is to support the shift towards more resilient agriculture 

through the development of sustainable irrigation services (MWE & MAAIF, 2020). 
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2.3 RAINWATER HARVESTING (RWH) 

Rainwater harvesting refers to a technology for collecting, concentrating and storing 

rainwater/runoff from rooftops, land surfaces or rock catchments using simple to engineered 

techniques for productive purposes such as crop, fodder, pasture and tree production, livestock 

watering, domestic water supply and ecosystems sustenance (Ibraimo & Munguambe, 2007; 

Mishra, 2014; Durodola et al., 2020).  For agricultural applications, RWH is defined as a method 

of inducing, storing and conserving local surface runoff, mostly in arid and semi-arid regions 

(Hatibu & Mahoo, 1999; Ibraimo & Munguambe, 2007). 

Approximately 50 – 70 per cent of the rainfalls received in the dry tropical regions across the world 

are lost as evaporation and/or surface runoff and hence inaccessible by crops (Rockström & 

Falkenmark, 2015). Consequently, 53 per cent increase in water supply to agricultural production 

becomes necessary if the targeted 70 per cent increase in the global food security by 2050 is to be 

achieved (Velasco-Muñoz et al., 2019). To reduce the aforementioned water losses, the adoption 

of strategic water resource management interventions such as rainwater harvesting becomes 

paramount in such dry tropical regions. 

As reported by Ammar et al. (2016), RWH technology has been practiced worldwide for over 9 

000 years. Although there is lack of quantification of the harvested rainwater used globally (Barron 

et al., 2009), RWH technology still forms an integral part of many farming systems by providing 

a reliable source of water. This is especially true for areas that receive significant amounts of 

rainfall but lack any conventional centralised supply system, owing to the temporal and spatial 

variability of rainfall (Ibraimo & Munguambe, 2007). For instance, studies conducted by Abdulla 

& Al-Shareef (2009) and Mourad & Berndtsson (2011) in the two arid countries of Jordan and 

Syria (with annual rainfall < 300 mm), found that approximately 15 and 35 MCM, respectively, of 

rainwater is harvested in these countries annually. 

Similarly, Barron et al. (2009) reported that by adopting RWH  technology, 15 million people in 

China had access to safe drinking water and 2.6 million ha of agricultural land was irrigated. 

Furthermore, Oweis & Hachum (2003) indicated that up to 50 per cent of rains received in the 

driest parts of West Asia and North Africa can be harvested with appropriate RWH techniques. In 

fact, increase in crop yields by up to 5 times have been realised from the adoption of RWH 

technology in many countries across the world, such as Tanzania, Kenya, India, among others 
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(Rockström & Falkenmark, 2015). In the Ugandan context, traditional practices such as use of 

banana stems as gutters and collection containers such as saucepans and pots, trenches and contour 

bunds etc., have been used since the 1950s (Kiggundu et al., 2018).  

However, the formal introduction of RWH in the country started in 1997, with a primary target on 

institutional RWH (MWE, 2016; Zziwa et al., 2018). This later saw the formation of the Uganda 

Rainwater Association (URWA) in 1999, whose mandate was to “support communities to improve 

their socio-economic situation through mobilisation, information, skills and experience sharing” 

(URWA, 2013). Between 2003-2004, the Government of Uganda prepared a rainwater strategy 

aimed at promotion and building capacity of communities in RWH, primarily domestic rainwater 

harvesting (MWE, 2016). Since 2006, various development partners have been providing training 

and constructing numerous demonstration RWH facilities in different parts of Uganda (MWE, 

2016). 

2.3.1 Types of rainwater harvesting technologies in Uganda 

There are two common types of RWH techniques in Uganda, namely, rooftop RWH and surface 

runoff harvesting, discussed in the following section. 

2.3.1.1 Rooftop rainwater harvesting 

Rooftop RWH is defined as a system of collecting rainfall from the roof of a building and storing 

it in storage facilities for domestic use, livestock watering or irrigation (Koskei, 2016; RoU, 

2020b). The most common rooftop RWH storage facilities in Uganda  include: saucepans, 

jerrycans, drums, ferro-cement tanks, rainwater jars, masonry tanks, Bob rainwater bag, among 

others (URWA, 2013). According to RoU (2020a), rooftop rainwater harvesting together with self-

supply constitute 0.4 per cent of the rural water sources in Uganda. However, this technique’s 

application in the country is limited to domestic water supply and to a limited extent agriculture 

because it is characterised by small catchment areas (rooftops) and low storage capacities as shown 

in Figure 2.1 (Kisakye et al., 2018; Koskei, 2016; RoU, 2020b). 

The most common RWH technique in Isingiro district is rooftop RWH with over 3 538 functional 

rainwater storage tanks present in households, providing water to about 9 per cent of this district’s 

population (MWE, 2020b, 2022). A similar trend is found in Ngarama and Kashumba sub-counties 

(where the Bigasha watershed is located) that together have a total of 1 019 rooftop RWH tanks 

alongside 3 earth dams and 3 valley tanks as shown by Table 2.1 below. 
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Table 2.1 Point water supply statistics for Ngarama and Kashumba sub-counties 
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Ngarama Rural 44 364 21 279 48% 3 25 13 816 0 2 7 

Kashumba Rural 28 147 20 667 73% 0 8 15 203 3 1 54 

(Source: MWE, 2022) 

2.3.1.2 Surface runoff harvesting 

Surface runoff harvesting refers to the collection, accumulation, treatment or purification and 

storing of storm water from a catchment for reuse in domestic supply, livestock watering and  

irrigation, among others (Chemutai, 2016; RoU, 2020a). It consists of a runoff generating 

area/catchment, transfer infrastructure such as channels, gullies and hard surfaces and a command 

area where runoff is utilised (Hatibu & Mahoo, 1999; Ammar et al., 2016; RoU, 2020a). 

Surface runoff harvesting can be performed on micro or macro-catchments and studies across 

different parts of Uganda have reported the adoption of the technology (RoU, 2020b). Surface 

runoff harvesting techniques include: fanya-juu trenches, contour bunds, soak away pits, semi-

circular bunds, ridges and mounds, terracing, trash-lines, road water harvesting, simple banana 

planting pits, farm ponds, valley tanks and earth dams (Kiggundu et al., 2018; Stanley et al., 2020). 

The last two (shown in Figure 2.1) are more common in the 121 cattle corridor districts in Uganda 

where they provide water for livestock (Maher et al., 2016). 

       

Figure 2.1 Rainwater harvesting techniques/systems in Uganda 
Rooftop RWH 

 

Valley tank 

 

Earth dam 
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2.4 Benefits of RWH and constraints towards its adoption in Uganda 

Rainwater harvesting technology is not new to Ugandans and experiences of its practice across 

various parts of the country indicate that myriads of benefits can be realised from its use.  Based 

on a study conducted by Kiggundu et al. (2018) in three of  Uganda’s cattle corridor districts, 

where RWH is extensively used for both livestock watering and irrigation of vegetables, coffee 

and tea seedlings, it was reported that RWH increased vegetable yields by up to five-fold which 

resulted in improved food self-sufficiency and house hold income. The same authors noted that 

RWH also reduced the burden to women, children and herdsmen of walking long distances in 

collecting and transporting water and hence they had adequate time to engage in other productive 

activities.  

Similar results to those mentioned above were also reflected in the studies by Zziwa et al. (2018) 

and Stanley et al. (2020) who further noted that surface runoff harvesting contributed to reduction 

in soil erosion, moderation of floods, maintenance of soil nutrients, efficient use of pesticide and 

reduction in fertilizer loss. However, only 1 per cent of Uganda’s 75 per cent rural farming 

population practice RWH despite the numerous benefits that it provides (MWE, 2016; Staddon et 

al., 2018; O’Hanlon et al., 2020). In other words, RWH technology contributes only 60 715 litres 

of water to Uganda’s per capita annual water use of 6 071 571 litres (UBOS, 2021). This can be 

attributed to the limited knowledge of the potential of surface runoff harvesting across different 

agroecological zones in the country and appropriate techniques for RWH. Consequently, the RWH 

systems are either poorly sited or inappropriate technique(s) are chosen for particular areas 

(Kiggundu et al., 2018; Zziwa et al., 2018; O’Hanlon et al., 2020). 

To address this challenge, MWE (2016) and Kiggundu et al. (2018) recommended the use of 

satellite products to: (i) map out potential runoff water harvesting areas in Uganda, (ii) estimate 

the potential yield from those catchments, (iii) establish the nature and level of pollutants contained 

in the harvested rainwater, (iv) assess the costs that are required to make the harvested water 

available for reuse as well as potential benefits and (v) evaluate profitability and risks associated 

with the use of this technology in different smallholder farmer setups. This research project sought 

to tackle the first two recommendations above, specifically in the Bigasha watershed. 
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2.5 Criteria and methods for determining potential sites for RWH 

There are two approaches that are commonly used, namely: 

a) Traditional non-spatially based method 

This involves conventional field surveys by specialists (soil, topography, land use etc.) of the area 

where the RWH project is to be implemented. Simple tools such as soil augers and levels may be 

used to identify sites with optimal biophysical characteristics for RWH (Ziadat et al., 2012; 

Mahmoud et al., 2015). Although this is indisputably the most accurate method for RWH site 

identification, it is time consuming and expensive and hence applicable to only small areas 

(Ammar et al., 2016; Mosase et al., 2017). 

b) Spatially-based method 

Here, the parameters that determine the suitability of a site for RWH such as rainfall intensity 

and/or runoff depths, topography, land use land cover, soil texture/depth, etc., are analysed 

spatially (Oweis et al., 2012; Ammar et al., 2016). Firstly, using remotely acquired imagery (by 

satellites or other platforms), land use land cover, soil,  grid interpolated rainfall (when using 

digital rainfall estimates) and other feature layers are derived at various spatial and temporal scales 

(Ganole, 2010; Munyao, 2010). Then with the help of the GIS spatial analyst tool, thematic maps 

for the feature layers are generated (Ammar et al., 2016).  

Under the spatial-based analysis, several methods can be used to integrate these maps to identify 

possible RWH sites. These methods can be categorised into three groups, that is, multi-criteria 

analysis (MCA) techniques using either crisp or fuzzy sets, artificial intelligence (AI) methods and 

hydrological models (HMs). They can be applied either separately or within a GIS environment 

(Mahmoud et al., 2015; Mosase et al., 2017). The commonly used spatially-based RWH site 

suitability analysis methods are discussed in the following section.  

2.5.1 Weighted linear combination (WLC) 

This involves standardising each of the criteria maps, assigning weights of relative importance to 

each of them and generating a final RWH site suitability map of various suitability classes ranging 

from most suitable to unsuitable sites (Al-komaim et al., 2018; Toosi et al., 2020). The WLC is 

usually implemented in GIS using the raster calculator tool by a process known as weighted 

overlay process (Rana & Maruthi, 2020). One weakness of applying WLC alone is that criteria 
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weights are assigned based on the best compromise among competing interests (Ammar et al., 

2016).  

2.5.2 Boolean logic operators (AND/OR) 

In this technique, the criteria maps for RWH site selection are reclassified into binary maps that 

are later merged/overlaid to generate a constraint map consisting of only two suitability classes 

that is, 0 for unsuitable areas and 1 for suitable areas (Bhowmick et al., 2014; Matomela et al., 

2020). Although this method is simple and quick to implement, it is not flexible since it classifies 

RWH sites into strictly suitable and unsuitable sites (Aghaloo & Chiu, 2020; Matomela et al., 

2020). 

2.5.3 Analytic hierarchy process (AHP) 

The analytic hierarchy process provides a structured technique for organising and analysing 

complex decisions in a hierarchical manner using mathematics and expert knowledge (Ammar et 

al., 2016). At the topmost level is the problem to be solved while the lowest levels contain details 

of factors influencing the problem (Ammar et al., 2016; Mulualem & Yegizaw, 2018). In AHP, two 

criteria are compared to each other in a pairwise comparison matrix consisting of a  nine point 

scale of relative importance (Ammar et al., 2016; Al-Ghobari & Dewidar, 2021).  

This comparison assists in assigning weights to the criteria after which normalised weights are 

generated using Eigen vector technique (Rana & Maruthi, 2020). The weighted criteria layers are 

then overlaid in GIS to generate a RWH suitability map (Ammar et al., 2016). Since AHP performs 

a consistency check on the judgments, it tends to reduce bias in decision making (Al-komaim et 

al., 2018). 

2.5.4 Fuzzy logic/fuzzy sets 

Here, the criteria layers are reclassified into fuzzy membership classes on a scale of 0 to 1 based 

on their contributions to RWH site selection (Manaouch et al., 2021). Zero (0) represents sites that 

are not members of the set while 1 represents sites that are certainly members of the set (Ajibade 

et al., 2020). Then using fuzzy overlay/fuzzy gamma operator in GIS, the fuzzified raster layers 

are integrated to generate a RWH suitability map (Aghaloo & Chiu, 2020; Chowdhury & Paul, 

2021). The advantage(s) of the fuzzy logic MCA tool is that it models inexactitudes within class 

boundaries thereby reducing the ambiguity and imprecision of the decision maker in selecting 

cutoff points for the criteria layers (Mosase et al., 2017).  
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2.5.5 Artificial intelligence (AI) 

The most applicable AI models in RWH site selection are the supervised learning classification 

and regression models such as random forest, support vector machines, neural networks, logistic 

regression and K-Nearest Neighbors (Al-Ruzouq et al., 2019; Meena et al., 2021).  

Firstly, conditioning factors (thematic layers generated in GIS) for RWH site suitability analysis 

and a sample of point datasets are established (Al-Ruzouq et al., 2019) . The sample data is then 

divided into training and testing subsets usually in a ratio of seven to three. Each of these subsets 

of data alongside conditioning factors are then subjected to the AI algorithm to predict suitable 

RWH sites. Finally, the output of the AI model is digitised in GIS and a RWH site suitability map 

is generated (Naghibi et al., 2017). AI can be implemented using R-programming, python or other 

tools such as rapid miner. One of the most notable advantage of AI models is their high prediction 

accuracy (Rahmati et al., 2016; Naghibi et al., 2017).  

2.5.6 Hydrological modelling (HM)  

Hydrological modelling is the representation of the physical, chemical or biological characteristics 

of a catchment and simulating natural hydrological processes thereby facilitating the prediction of 

system behavior, understanding of various hydrological processes and decision making (Gayathri 

et al., 2015; Cloke & Schaake, 2020). It is commonly performed in areas where there is data 

scarcity, incomplete understanding, various alternatives to choose from and/or where 

experimentation with a prototype system is difficult (Cloke & Schaake, 2020). 

With respect to RWH site suitability analysis, hydrological modelling is specifically used for 

estimating the amount of runoff that a particular catchment can generate. Here, point data for the 

feature layers such as land use land cover, soil, slope from digital elevation model (DEM) etc., are 

combined in a GIS environment to generate curve numbers (CNs), that are later processed as a 

grid to estimate runoff (Satheeshkumar et al., 2017).  

Generally, evidence of the application of the spatially-based RWH site suitability analysis methods 

have been found in many countries around the world, especially those in arid and semi-arid regions 

such as India, Jordan, Syria, Iraq, South Africa, Tanzania, among others (Ammar et al., 2016). 

However, it is surprising that only a few, if any, of the above applications are from Uganda. This 

may be attributed to two factors: (1) lack of technical knowledge on the use of the spatially-based 

methods for RWH site selection, as highlighted by Kiggundu et al. (2018) and RoU (2020a) and 
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(2) scarcity of accurate input and validation data, which is common in developing countries 

(Ammar et al., 2016).  

Therefore, the adoption of simple, flexible, accurate, time-efficient and cost-effective RWH site 

suitability analysis methods, such as hydrological modelling integrated with remote sensing and 

GIS, as reported by Ammar et al. (2016) becomes necessary not only in the Bigasha watershed but 

Uganda at large. This is because, as indicated earlier, HM is the only spatially-based method that 

quantifies the surface runoff that the watershed can generate during RWH site selection. 

Furthermore, the use of expert judgement when assigning weights of relative importance to the 

criteria layers in some MCA tools and AI models compromise the accuracy of these techniques 

for RWH site selection.  

2.5.6.1 Classification of hydrological models 

There are two broad classes of hydrological models, namely, deterministic models which give a 

single output for a set of inputs and stochastic models which give several outputs for a set of inputs 

(Gayathri et al., 2015; Cloke & Schaake, 2020). Rainfall-runoff models are deterministic models 

that can further be subdivided into six groups that is, empirical, conceptual, physically based, 

lumped, semi distributed and distributed models, depending on the physical principles applied in 

the model and temporal and spatial variability of the catchment parameters (Sitterson et al., 2017). 

2.5.6.2 Review of commonly used rainfall-runoff simulation models  

The application of models for hydrological studies has become indispensable in the recent years 

and with rapid advancements in computer technology, numerous computer-based 

hydrological/water quality general watershed models have been developed and applied globally to 

perform modelling tasks (Dhami & Pandey, 2013; Gayathri et al., 2015). The most common ones 

are: AnnAGNPS, GSSHA, VIC, Wet Spa, PRMS, SWAT, HYPE, WinSRM, DWSM, Hec-HMS, 

MODFLOW, HSPF and MIKE-SHE. 

One of the most challenging tasks for potential model users is the choice of the best hydrological 

model for a particular application (Droogers et al., 2011; Dhami & Pandey, 2013). This is because 

these models vary substantially in the construction of their individual component processes that 

not only affects their modelling capabilities but also their overall accuracy (Gayathri et al., 2015). 

Therefore, it is crucial to make a thorough assessment of the model’s capabilities and limitations 

before adopting it for any project.  
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Several researchers have compared various hydrological models in order to propose a more 

generalised hydrological model for global application (Dhami & Pandey, 2013; Sitterson et al., 

2017). For example, Dhami & Pandey (2013) performed an intercomparison evaluation of nine 

commonly used, recently developed and regularly updated hydrological models viz: AnnAGNPS, 

GSSHA, WetSpa, PRMS, SWAT, HYPE, WinSRM, Hec-HMS and MIKE-SHE. This was based 

on the hydrological processes that the model can simulate, model’s minimum input data 

requirements, governing equations used for simulating hydrological processes and the model’s 

spatial scale. The results of this inter-comparison (Table 2.2) show that SWAT is the only 

continuous time scale, computationally efficient and publicly available model with manageable 

input data requirements and applicable to any size of watershed. 

Table 2.2  Summary of common hydrological models and their application limitations 

 
(Source: Dhami & Pandey 2013) 
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2.6 Assessing the relevance of factors that determine technical suitability of a site for RWH  

2.6.1 Slope 

Slope of the catchment has been identified by most studies as one of the most important factors to 

consider when locating a RWH site, since it has a direct impact on the ease with which rainfall is 

transformed into runoff (Toosi et al., 2020). This is because the partitioning of rainwater between 

infiltration and runoff is greatly influenced by the topography of that given catchment (Toosi et 

al., 2020).  

Landscapes with steep slopes are often considered least suitable for RWH because they are 

characterised by fast flowing runoff (reduced opportunity time) and hence demand large 

earthworks to create a RWH structure (Al-Ghobari & Dewidar, 2021). Furthermore, such slopes 

are prone to erosion and hence increased sediment loading problems occur (Adham et al., 2018; 

Khudhair et al., 2020). Ideally, catchments with fairly gentle slopes of less than 5 per cent 

constitute the best sites for RWH (Adham et al., 2018; Sayl et al., 2020; Toosi et al., 2020; Nyirenda 

et al., 2021). 

2.6.2 Rainfall intensity and runoff depth 

This is another influential factor for RWH site identification although most studies have not given 

it much attention (Ammar et al., 2016). In areas with a single rainy season, the annual average 

rainfall received in each watershed determines the cumulative amount of runoff that watershed can 

generate. Generally, it is expected that areas that receive high annual average rainfall are best suited 

for RWH and vice versa. 

However, in the context of this study where there are two renown rainfall seasons, the first one 

running from March to May, also known as MAM and the second running from September to 

November, also known as SON (Onyutha et al., 2021), the average seasonal rainfall for each of 

these rainfall seasons and their corresponding surface runoff volumes could perhaps be considered 

instead. It is this surface runoff that could be used for irrigating the coffee crop in the intervening 

dry months June to August (JJA) and December to February (DJF).  

For practical implementation of RWH systems, particularly ex-situ/macro catchment systems, a 

design rainfall of at least 200 mm/year is desirable (Toosi et al., 2020) while FAO recommends an 

annual rainfall range of 100 to 1 000 mm (Nyirenda et al., 2021). However, this should take into 

consideration other processes that occur during and/or after a rainfall event such as interception, 
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infiltration, evapotranspiration and deep percolation which have significant bearing on the 

percentage of rainfall that becomes runoff and this varies from catchment to catchment (Toosi et 

al., 2020). 

2.6.3 Soil texture 

Soil texture by definition refers to the proportion of sand, silt and clay particles which a soil 

contains (Rana et al., 2020; Al-Ghobari & Dewidar, 2021). It is another key criterion to consider 

when planning a RWH project. This is because just like slope, the texture of any given soil has a 

significant influence on not only the infiltration but also the runoff and water storage characteristics 

of that soil (Khudhair et al., 2020; Nyirenda et al., 2021). 

Generally, naturally poorly drained fine to medium textured clayey soils have higher runoff 

generation potential and hence form more suitable sites for RWH compared to well drained coarse 

textured sandy soils (Naba, et al., 2018; Rasul et al., 2019; Shadmehri et al., 2020). The high water 

retention and runoff generation capacity of fine textured soils is attributed to the large number of 

micro pores within clay soils which restrict the movement of water down into the soil profile (Rana 

& Maruthi, 2020). 

2.6.4 Land Use Land Cover (LULC) 

Land use land cover equally plays a significant role in rendering a catchment suitable for RWH. 

The hydrological response of any watershed is dependent on land use land cover and the rainfall 

it receives and for many years hydrologists have found land use land cover patterns a notable factor 

to consider when evaluating the runoff dynamics of any watershed (Wu et al., 2018; Rasul et al., 

2019). 

Various land uses and vegetation covers have different impacts on the velocity and amount of 

runoff generated from a watershed (Rana et al., 2020; Toosi et al., 2020; Nyirenda et al., 2021). 

Dense vegetation and forest covered areas are often associated with high rainfall interception and 

water infiltration and hence are poor generators of runoff whereas built-up and pasture covered 

areas potentially generate high volumes of surface runoff (Adham et al., 2018; Al-Ghobari & 

Dewidar, 2021; Nyirenda et al., 2021). 
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2.7 SWAT model description 

The soil and water assessment tool (SWAT) is defined as a continuous time, semi distributed, 

physically process-based and computationally efficient river basin model. It was first developed 

in the early 1990s for the United States Department of Agriculture (USDA), to evaluate the effects 

of alternative management decisions on water resources and non-point source pollution in large 

river basins (Zou et al., 2016; Diriba, 2021). The latest version is QSWAT+, which is a completely 

restructured version of SWAT with greater flexibility in representing the interactions and processes 

within a watershed (Bieger et al., 2017). 

The model is capable of simulating a wide range of hydrological processes such as surface runoff, 

evapotranspiration, infiltration, percolation, shallow and deep aquifer flows, channel and reservoir 

routing (Efthimiou, 2018; Farzana et al., 2019). During simulations in SWAT, the watershed is first 

divided into multiple watersheds (subbasins), followed by landscape units (if necessary), which 

are further subdivided into hydrologic response units (Kaviya, 2013; Gayathri et al., 2015).  

According to Dile et al. (2019), a subbasin is an area of land draining into a stream reach. Subbasins 

are the main subdivisions of a watershed whose SWAT outputs are generated and studied. They 

contain channels, which are finer divisions and extensions of stream reaches where the components 

of a watershed are precisely placed. These components are: landscape units, reservoirs, ponds, 

point sources and hydrologic response units (HRUs). Landscape units are areas draining into a 

channel reach and it is subdivided into the floodplain and upslope regions (Dile et al., 2022). The 

HRUs consist of homogenous land use, topographical, soil and management characteristics (Dile 

et al., 2022). However, Arnold et al. (2012) and Farzana et al. (2019) have indicated that the HRUs 

are represented as a percentage of the sub watershed area and may not be contiguous or spatially 

identified within SWAT simulation. 

The two phases in SWAT simulation are the land phase, that controls the amount of water, 

sediment, nutrient and pesticide loading in the main channel of each subbasin, and the routing 

phase, that is concerned with the movement of water, sediment and agricultural chemicals through 

the channel network to the watershed outlet (Zou et al., 2016; Diriba, 2021). 

The main propulsive force behind all land phase simulation processes in SWAT originates from 

the water balance equation expressed below (Kaviya, 2013; Ruan et al., 2017; Diriba, 2021): 
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SWt = SWo + ∑(Pday − Qsurf − Ea − Wseep − Qgw)

i

i=1

 
.............................................(2.1) 

where: 

SWt and SWo are the final and initial moisture contents on day i (mm), t is time in days, Pday is the 

precipitation on day i measured in mm, Qsurf is the surface runoff measured in day i, Ea is the 

amount of evapotranspiration on day i (mm), Wseep is the amount of water that enters the vadose 

zone from the soil profile on day i (mm) and Qgw is the return flow amount in day i (mm). The 

governing processes in SWAT modelling are surface runoff, evapotranspiration and channel 

routing as discussed below (Kaviya, 2013; Shanbor & Manoj, 2017). 

a) Surface runoff 

According to Kaviya (2013), Shanbor & Manoj (2017) and Diriba (2021), there are two methods 

used in SWAT for estimating surface runoff, namely, the Curve Number method developed by the 

USDA Soil Conservation Service (USDA SCS, 1972) and the Green and Ampt infiltration method 

(Green & Ampt, 1911). However, due to readily available daily rainfall data, most studies use the 

SCS-CN method whose general equation is given as: 

Qsurf  =
(Pday−Ia)2

(Pday − Ia +  S)
 ....................................................................................................(2.2) 

where Qsurf is the accumulated runoff or rainfall excess (mm), Pday is the precipitation for the day 

(mm), Ia is the initial abstraction that includes surface storage, interception and infiltration prior to 

runoff and S is a retention parameter (mm) which varies spatially with the changes in the land 

features such as soil, land use, slope and management practices and temporally with soil water 

content (Kaviya, 2013). The S is expressed mathematically by the following equation: 

 (S =  25.4 ∗
10

CN
− 10 .........................................................................................................(2.3) 

The initial abstraction is usually approximated as 0.2S, whose substitution transforms equation 2.2 

above to: 

Qsurf =
(Pday−0.2S)2

(Pday − 0.8S)
 .......................................................................................................(2.4) 

The value of the curve number is a function of land use practice, soil permeability and hydrologic 

soil group (Kaviya, 2013; Shanbor & Manoj, 2017). The selection of the hydrologic soil group(s) 
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used in the SWAT model is from the classification given by US Natural Resources Conservation 

Service (NRCS). 

b) Reference evapotranspiration  

SWAT provides three different options for estimating reference evapotranspiration that is: Penman-

Monteith method (Monteith, 1965), Priestly-Taylor method (Prestley and Taylor, 1972) and 

Hargreaves method (Hargreaves et al., 1985) as cited by (Kaviya, 2013; Shanbor & Manoj, 2017 

and Worku et al., 2017) . The choice of the method to use depends on data availability (Kaviya, 

2013). 

c) Channel routing 

This belongs to the second phase of  SWAT simulation processes and can be estimated using either 

the Muskingum method that models the storage volume in a channel length as a combination of 

wedge and prism storages or the variable storage method that uses a simple continuity equation in 

routing the storage volume (Shanbor & Manoj, 2017; Worku et al., 2017). 

2.7.1 SWAT model sensitivity and uncertainty analysis, calibration and validation 

According to Abbaspour et al. (2017), sensitivity analysis refers to the identification of the most 

important influence factor(s) in the model. Sensitivity analysis of model parameters is important 

because it provides information of the important processes in the study area and reduces the 

number of parameters in the calibration procedure by eliminating non-sensitive parameters 

(Abbaspour et al., 2017). The two common parameter sensitivity analysis performed in the SWAT 

model are the “one at a time” (local) and “all at a time” (global) sensitivity analysis (Abbaspour, 

2021).  

In the former, a single parameter is changed at a time to check its effect on the objective function, 

with the other parameters kept constant while in the latter, all parameters are changed at the same 

time (Abbaspour et al., 2017). The global sensitivity analysis method which produces the most 

reliable results uses the multiple regression approach to quantify the sensitivity of each parameter 

through the following expression (Abbaspour et al., 2017, 2021): 

g = ∝ + ∑ β𝑖 ∗  𝑏𝑖

n

i=1

 
.............................................................................................................(2.5) 
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where g is the value of the objective function, α is the regression constant, β is the coefficient of 

the parameters and b is the parameter. The above expression regresses the Latin hypercube 

parameters against the objective function values (Abbaspour, 2021).  

Similarly, uncertainty analysis is the process of propagating all model input uncertainties to model 

outputs. These model input uncertainties may be caused by the modeler’s lack of knowledge of the 

physical model inputs, namely, land use, soil and climate and/or the model parameters and 

structure (Abbaspour et al., 2017). Model calibration is the process of determining the best 

parameterisation of a model for a specified set of local situations thereby reducing the forecast 

uncertainty (Diriba, 2021).  

During calibration, the parameter values are adjusted within the recommended ranges until the best 

simulation is attained (Arnold et al., 2012). Finally, model validation refers to the process of testing 

the calibrated parameter(s) with a new set of data. Validation of the model provides means for 

justifying that the developed model is capable of making satisfactory predictions (Refsgaard, 

1997). 

In the SWAT model, all the above tasks are performed with the help of the SWATCUP program 

(the current versions are: SWATCUP-2019, SWATCUP-Premium and SWATPlusCUP). The 

program has a graphical module for displaying simulation results, dotty plots to show the 

distribution of sampling points and visualise sensitivity of the parameters and the 95 per cent 

prediction uncertainty (95 PPU), p and r factors, for quantifying model uncertainties and goodness 

of the model (Abbaspour, 2021).  

The common algorithms linked to the SWATCUP program that enables it to perform the 

calibration, validation, sensitivity and uncertainty analysis tasks are: the Generalised Likelihood 

Uncertainty Estimation, Parameter Solution, Particle Swarm Optimisation (PSO) and Sequential 

Uncertainty Fitting (SUFI-2). The latter was replaced by the SWAT Parameter Estimator (SPE) in 

the SWATCUP-Premium and SWATPlusCUP versions (Rouholahnejad et al., 2012). However, 

SUFI-2 and SPE are the most widely used algorithms. This is because they require fewer number 

of runs to reach acceptable calibration results (Amin & Nuru, 2020).  

These algorithms map all uncertainties on the parameters and try to capture most of the measured 

data within the 95 per cent prediction uncertainty (95PPU) through an iterative process (Abbaspour 
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et al., 2015, 2021). The 95PPU is determined at 2.5 and 97.5 per cent levels of the cumulative 

distribution of an output obtained through Latin hypercube sampling (Abbaspour et al., 2015). The 

two commonly used indices to test the goodness of fit of the SWAT model when its outputs are 

expressed as uncertainty bands (95PPU band) are the p and  r-factors (Amin & Nuru, 2020). 

The p-factor is the percentage of the measured data bracketed by the 95PPU and it provides the 

measure of the model’s ability to capture uncertainties (Amin & Nuru, 2020). On the contrary, the 

r-factor is a measure of the quality of the calibration and it indicates the thickness of the 95PPU, 

that is to say, the measured data that are not simulated well by the model (Amin & Nuru, 2020). 

Its value is computed by the following equation: 

    r − factor  
1

n
∑ (xs

ti,97.5%  −  xs
ti,2.5% )

nj
ti

σobs
 .............................................................................(2.6) 

where xs
ti,97.5%and xs

ti,2.5% are the upper and lower boundary of the 95 PPU at a time step t and 

simulation i, nj is the number of data points, and σobs is the standard deviation of the jth observed 

variable. An ideal model should have a p-factor of 1 or 100 per cent and an r-factor of 0 or 0 per 

cent (Amin & Nuru, 2020). However, for stream flow, a p-factor of at least 0.7 and r factor of less 

than 1.5 is acceptable depending on the scale of the project and adequacy of the input and 

calibration data (Abbaspour et al., 2017). 

2.7.2 SWAT model performance evaluation 

The three widely used statistical indices (objective functions/efficiency criteria) for evaluating the 

performance of the SWAT model are: the coefficient of determination (R2), Nash Sutcliffe 

efficiency (NSE) and per cent bias (PBIAS). The coefficient of determination is an indicator of the 

strength of the linear relationship between the observed and simulated data (Amin & Nuru, 2020). 

It measures how well the simulation versus the observation regression line approaches an ideal 

match. Its value is determined by the following equation: 

R2 =    
∑ (Qm,i −  Q

′
m  )(Qs,i −  Q

′
s  )

2n
i

∑ (Qs,i −  Q′
s  )

2
(Qs,i −  Q′

s  )
2n

i

 ...............................................................................(2.7) 

where R2 is the coefficient of determination, Qm.i is the measured value of the ith observed data, 

Qs.i is the simulated value of the ith simulated output and Q'm and Q's are the averages of the observed 

and simulated values, respectively (Abbaspour, 2021). The value of R2 ranges from 0 to 1, where 
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0 indicates no correlation (Arnold et al., 2012). However, a value of at least 0.5 is satisfactory 

(Amin & Nuru, 2020). 

The Nash Sutcliffe Efficiency indicates how well the plot of the observation versus the simulation 

fit on the 1:1 line (Amin & Nuru, 2020). The higher the value of NSE, the better the accuracy of 

the SWAT model and vice versa. A model with a negative NSE indicates very poor predictions and 

this implies that the average of the observed data is a better estimate than the model predictions 

(Arnold et al., 2012; Amin & Nuru, 2020). The value of NSE is determined by the following 

equation: 

NSE =  1 −   
∑   (Qi −  Qs  )

2n
i

∑   (Qi −  Q  )2n
i

 ...........................................................................................(2.8) 

where NSE is the Nash Sutcliffe efficiency, Qi is the observed value, Qs is the simulated value and 

Q is the average of the observed values (Abbaspour, 2021).  

The value of NSE ranges from -∞ to 1 but a value of at least 0.5 is satisfactory (Amin & Nuru, 

2020). Finally, the per cent bias measures the average tendency of the simulated data to be larger 

or smaller than the observations. A model with positive PBIAS is considered to be underestimating 

the phenomenon under investigation while that with a negative PBIAS is considered to be 

overestimating it (Gupta et al.,1999) as cited by (Abbaspour, 2021). Its value is determined using 

the following equation: 

PBIAS   = 100 ∗   
∑ (Qm,i −  Qs,i  )  n

i

∑ Qm,i  
n
i

 
.................................................................................(2.9) 

where 𝑄𝑚,𝑖  𝑎𝑛𝑑  𝑄𝑠,𝑖  are the observed and simulated values, respectively (Abbaspour, 2021). An 

ideal model should have a PBIAS of zero (0) per cent but a value ranging from ± 25 per cent is 

satisfactory (Amin & Nuru, 2020). A summary of the SWAT modelling processes is as shown in   

Figure 2.2 below. 
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Figure 2.2  A typical SWAT modelling processes  

(Source: Nilawar & Waikar, 2018) 

2.7.3 Summary of the SWAT model runoff simulation results for RWH site selection 

Over 4 000 publications in the SWAT database report on the application of various versions of the 

SWAT model for a range of purposes (Tan et al., 2020). For example, Janssen (2020) integrated 

the QSWAT model with the Google earth engine, python coding, Zoom earth and a socio 

hydrological model to estimate new reservoir locations for small holder cotton farmers in India. 

The findings of this study indicated that, of the existing 2 904 reservoir locations, only 2 474 

qualified as potential locations thus indicating the need for the proper siting of new reservoirs in 

this area. 

Similarly, Harka et al. (2020), Farooq et al. (2020) and Dwiatmojo et al. (2021) applied the 

ArcSWAT model for: identifying suitable RWH sites in Ethiopia, exploring surface runoff potential 

and RWH sites in Pakistan and mapping RWH potential in Indonesia, respectively. The results 

from the calibrated and validated model produced by Harka et al. (2020) show that ArcSWAT can 

satisfactorily predict stream flow (coefficient of determination (R2) of 0.81 for calibration and 0.79 

for validation and a Nash Sutcliffe efficiency (NSE) of 0.76 and 0.72, respectively). Neither  

Farooq et al. (2020) nor Dwiatmojo et al. (2021) calibrated their models but in Ethiopia, 553 

potential RWH sites were found which together could generate a runoff volume of 154 million 

cubic meters while in Indonesia, there were 226 potential RWH sites with a runoff generating 

capacity of up to 494  969 m3.  
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Other SWAT runoff simulation studies include: (i) runoff simulation in Tangnaihai hydrological 

station in the Yellow River in China by Li et al. (2020), whose results were R2 and NSE of 0.77 

and 0.76 during calibration and 0.90 and 0.89 for validation, (ii) rainfall runoff modelling study in 

ephemeral river basin in India by Bandi et al. (2020), with the results being R2 and NSE of  0.83 

and 0.85 during calibration and 0.83 and 0.67 during validation and (iii) hydrological modelling 

of Kangimi dam in Nigeria by Adeogun & Sanni (2019) where SWAT portrayed an excellent 

performance in the prediction of runoff inflow into the Kangimi dam with R2 and NSE of 0.92 and 

0.82 during calibration and 0.93 and 0.86 during validation. 

2.8 CROPWAT model 

The CROPWAT model is a Windows decision support system developed by FAO’s Land and Water 

Development division in 1992, with the support of the Institute of Irrigation and Development 

Studies of the University of Southampton, United Kingdom and the National Research Center of 

Egypt. Its primary purposes are calculation of reference evapotranspiration (ETo), crop water 

requirements (CWR) and irrigation water requirements (IWR) based on climatic and crop data 

(Dong, 2018; Aish et al., 2021). 

However, it is also applicable in the development of irrigation schedules for different management 

conditions, calculation of scheme water requirement for various cropping patterns, evaluation of 

farmers’ irrigation practices and estimation of crop performance under both rainfed and irrigated 

conditions (Feng et al., 2007; Stancalie et al., 2010; Laouisset & Dellal, 2016; Aish et al., 2021). 

The latest version is CROPWAT 8.0 whose calculation procedures are based on two of the FAO 

publications in the Irrigation and Drainage series, namely, number 24 entitled ‘Crop water 

requirements’ and number 33 entitled ‘Yield response to water’ (Doorenbos et al., 1977, 1979). 

The Penman-Monteith method is used by CROPWAT to compute reference evapotranspiration as 

per the recommendations  of the expert consultative meeting organised by FAO in May 1990 in 

Rome (Smith, 1992; Allen et al, 1998; Moseki et al., 2019; Gabr, 2021) and its equation is 

expressed as: 

ETo  =  
0.408 Δ((Rn − G) +  900γ)/(Ta + 273) ∗   U2 (ea − es)

Δ +  γ(1 + 0.34U2)
 ..............................(2.10) 

where: ETo is reference evapotranspiration (mm/day), Rn is net radiation at the crop surface 

(MJ/m2/day), G is heat soil flux (MJ/m2/day), Ta is average daily air temperature at 2 meters above 

https://www.fao.org/docrep/X0490E/X0490E00.htm
https://www.fao.org/docrep/X0490E/X0490E00.htm


28 

 

ground level (oC), U2 is the wind speed at 2 meters above ground level (m/s), es is the saturation 

vapour pressure (kPa), ea is the actual vapour pressure (kPa), Δ is the slope of the vapour pressure 

curve (kPa/oC) and γ is the psychometric constant (kPa/oC). 

Penman-Monteith was recommended because it closely approximates grass evapotranspiration at 

the location evaluated, is physically based and explicitly incorporates both radiation (energy) and 

aerodynamic parameters (Allen et al., 1998). Moreover, procedures have been developed for 

estimating missing climatic parameters. 

The crop water requirement, which refers to the amount of water lost by the field crop is computed 

in the CROPWAT model as a product of the crop coefficient (Kc) and the reference 

evapotranspiration as illustrated by the following equation: 

ETc  =  ETo  ∗  Kc ..........................................................................................................(2.11) 

where ETc is the crop water requirement, ETo is reference evapotranspiration and Kc is the crop 

coefficient, whose value varies with the crop’s growing stage. 

The net irrigation water requirement is computed as the difference between the crop water 

requirement and effective rainfall (Gabr, 2021; Alejo et al., 2021), as illustrated by the equation 

below: 

IRn =  ETc –  Pe ......................................................................................................(2.12) 

where IRn is the net irrigation water requirement, ETc is the crop water requirement and Pe is the 

effective rainfall. 

Depending on the irrigation system chosen, the gross irrigation requirement is computed as: 

IRg =  IRn/Ea  ...............................................................................................................(2.13) 

where IRg(IRn) are the gross(net) irrigation requirements and Ea is the irrigation efficiency obtained 

from local information or from the FAO 56 irrigation manual (Allen et al., 1998). 

Therefore, in this research project, remote sensing, GIS and the QSWAT+ (latest version of SWAT) 

and CROPWAT 8.0 models were utilised to assess the potential of rainwater harvesting for 

sustaining small scale irrigated coffee farming in the Bigasha watershed. 
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CHAPTER 3:  MATERIALS AND METHODS 

This section discusses the steps that were undertaken to assess the potential of RWH for sustaining 

small scale irrigated coffee farming in the Bigasha watershed through the integration of remote 

sensing, GIS and the QSWAT+ and CROPWAT models, as summarised in Figure 3.2. 

3.1 Description of the study area 

3.1.1 Location 

The Bigasha watershed is found in the Isingiro district, located in the absolute South-western part 

of Uganda. It lies between the latitude of 0o 48’30” S and 0o 59’ 0” S and longitude of 30o 45’ 30” 

E and 30o 59’ 30” E as shown in Figure 3.1. 

3.1.2 Topography 

The Bigasha watershed’s landscape can generally be described as undulating, with alternating 

highlands and lowlands spread throughout the watershed. The elevation ranges from 1 208 to            

1 788 meters above sea level, based on the topography report generated by the QSWAT+ model in 

this work. Most slopes in the area are greater than 10 per cent and the watershed is drained by 

seasonal watercourses which flow into the Kagera river. 

3.1.3 Land Use Land Cover 

The watershed occupies a total land area of 34 793 hectares (~ 348 km2). Croplands is the third 

largest land use type in the Bigasha watershed after grasslands and shrublands. The leading 

agricultural activities here are small scale banana growing and livestock rearing, with bananas 

accounting for nearly 70 per cent of  the total annual crop production (DPU, 2015). 

3.1.4 Soils  

The predominant soil type in the Bigasha watershed are Leptosols. These are very shallow soils 

with minimal development, dominated by coarse fragments overlying a continuous rock mostly 

found in areas with medium to high altitude. 

3.1.5 Climate and rainfall 

The climate of the area is characterised as tropical savannah with annual average temperatures 

ranging from 15oC to 27oC. The annual average precipitation and reference evapotranspiration 

estimates are 954 mm and 1 347 mm, respectively (AQUASAT, 2022). 
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Figure 3.1 Map of the study Area 



31 

 

 

Figure 3.2  Steps in assessing the potential of RWH in the Bigasha watershed 

3.2 Data sources  

3.2.1 Digital Elevation Model (DEM) 

A resampled 30-meter spatial resolution Shuttle Radar Topographic Mission (SRTM) DEM, which 

was part of the QSWAT+ model input data for watershed delineation was downloaded from the 

United States Geological Survey (USGS) database (www.earthexplorer.usgs.gov). This database 

was accessed through the ‘SRTM Downloader’ plugin installed in QGIS.  

3.2.2 Land Use Land Cover (LULC) map 

The LULC map was used for creating the HRUs in the QSWAT+ model. The three LULC maps 

used in this study were derived from three satellite images acquired between 1999 and 2022, with 
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a span of 11±1 years between their acquisition dates. These images were from the: Landsat 7 

ETM+, Landsat 5 TM and Sentinel 2A sensors, acquired in 1999, 2010 and 2022, respectively. A 

Landsat TM image of 2010 was preferred over that of Landsat ETM+ acquired in the same year 

because the ETM+ images acquired in the 2000s were affected by the ETM+ scan line sensor error 

and hence difficult to classify without scan line error correction. It was for the same reason that 

the 1999 imagery was used in place of the 2000 imagery.  

The Level 1TP (“precision and terrain correction”) Landsat images were downloaded from the 

USGS database (www.earthexplorer.usgs.gov) while the Level 1C Sentinel imagery was obtained 

from the European Space Agency (ESA) data portal (www.copernicus.eu). Both the USGS and 

ESA data bases were accessed through the ‘Semi-automatic Classification Plugin’ (SCP) installed 

in QGIS. The downloaded image scenes were those with a cloud cover percentage of utmost 1 per 

cent. The acquisition dates (day and month) of the three images are not uniform (as shown in Table 

3.1) because there were no image scenes with similar acquisition dates for all three of the images 

that had satisfactory cloud cover. The use of the three temporal LULC maps in this study was 

aimed at analysing the effect of land use change on runoff generation in the Bigasha watershed. 

Table 3.1 Metadata for the LULC images 
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3.2.3 Soil map 

Like the LULC map, the soil map was also used to create HRUs in the QSWAT+ model. The soil 

map in “jpg format” was obtained from the Uganda National Agricultural Research Laboratories. 

The map had four soil types, namely, Orthic Ferralsols, Plinthic Ferralsols, Humic Gleysols and 

Leptosols (also known as Lithosols). The shapefile layer of the soil map was not available at the 

time of this study because the Uganda soils mapping database was being updated. 

3.2.4 Meteorological data (2000 – 2020) 

The climate data for simulating the runoff from the Bigasha watershed using the QSWAT+ model 

and calculating the irrigation water requirements of coffee in the CROPWAT model included: 

precipitation, relative humidity, wind speed, minimum temperature, maximum temperature, solar 

radiation and sunshine hours. The weather data for the first five variables were obtained from the 

records of the nearest meteorological station (Mbarara) from the Uganda National Meteorological 

Authority (UNMA) database.  

The solar radiation data was obtained from the Climate Forecast System Reanalysis (CFSR) 

database, which was the recommended and most readily available global climate data source for 

the QSWAT+ model (Dile et al., 2022). The CFSR database has climatic data for five climate 

variables for a period between 1979 to July 2014. The sunshine hours data was not available and 

hence, the CROPWAT model sunshine hours estimates were used in this study. 

3.2.5 Stream flow data (2001 – 2018) 

This data was used for calibrating and validating the QSWAT+ model simulations. Since rivers 

within the Bigasha watershed are not gauged, the daily stream flow data from 2001 – 2018 

recorded at the outlet of the Kagera river, whose contributing catchment, the Kagera river basin 

(KRB) covers the Bigasha watershed was used. This data was further processed to estimate the 

Bigasha watershed flow. The flow data was obtained from the Ministry of Water and Environment 

(MWE) in Uganda. 
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3.3 Data preparation and processing 

3.3.1 Preparation of the QSWAT+ model input data 

The input data required by the QSWAT+ model for simulating surface runoff were the DEM, 

LULC map, soil map, land use and soil lookup tables and daily climatic data (precipitation, 

minimum and maximum air temperature, wind speed, solar radiation and relative humidity).  

3.3.1.1 Digital Elevation Model (DEM) 

The resampled 30 m spatial resolution grids of the DEM downloaded from the USGS were loaded 

on the QGIS working space. Each loaded grid was clipped to extract a raster layer that covers the 

study area using the “Clip raster by extent” tool. The clipped grids were then merged with the help 

of the “Merge tool”. The resultant grid of the DEM was reprojected to the Bigasha watershed’s 

projected coordinate system (WGS 1984 UTM Zone 36S). The DEM was then resampled from 30 

meters to 10 meters, to match with the spatial resolution obtained for the 2022 LULC image. 

Finally, to reduce time spent delineating the watershed as well as to improve accuracy, a 

rectangular mask of the DEM was created ensuring that it covered the entire study area as shown 

in Figure 3.3 below. 

 

Figure 3.3 Masked DEM for the Bigasha watershed 
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3.3.1.2 Land Use Land Cover (LULC) map 

The production of each of the three temporal LULC maps was performed in three stages, namely, 

image preprocessing, image classification and accuracy assessment. The procedures followed 

during image preprocessing and classification were those developed by Congedo (2021). 

a) Image preprocessing 

The downloaded image bands (Landsat or Sentinel bands, one product at a time) were loaded onto 

the semi-automatic classification plugin (SCP) interface, which was installed in QGIS. The SCP 

is a software interface that can be used for supervised classification of remote sensing images, 

providing tools for downloading the images and image preprocessing and post processing 

(Congedo, 2021). The image bands were then clipped to the extent of the study area using the “Clip 

multiple rasters” tool. The “dark object subtraction” atmospheric correction was then performed 

on the clipped image bands before they were converted to surface reflectance (Congedo, 2021). 

b) Image classification 

The images were classified using the SCP integrated with the KNN algorithm and Google Maps 

satellite image layer, all of which were installed in QGIS. The KNN classification algorithm is a 

non-parametric supervised machine learning algorithm, widely used for classification and 

regression tasks (Taunk et al., 2019; Yamaç, 2021). It was developed by Cover and Hart (1967), as 

cited in (Yamaç, 2021), for executing characteristic analysis where clear parametric 

approximations of probability densities are either unknown or difficult to determine. There are two 

steps in the classification process of the KNN algorithm, that is to say, the learning and the 

evaluation steps.  

In the learning step, the training input data is used to build the classifier. This step involves 

determining the factor of K, which is a parameter that determines the number of nearest neighbors 

to include in the majority voting process. While the evaluation step involves assessing the 

prediction accuracy of the classifier, based on the values of the “classification precision” obtained 

from the confusion matrix of the classification accuracy assessment report. Once the factor of K is 

known, the KNN algorithm groups the new input unclassified data into subsets and classifies it 

based on its similarity with previously trained data (Taunk et al., 2019). Taunk et al. (2019) further 

noted that the KNN algorithm can divide the input datasets into different classes in a much clearer 

way which increases its prediction accuracy. 
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The image classification was performed as follows: firstly, the “band set” for the preprocessed 

image bands was created within the SCP interface and its color composite (red, green, blue) also 

known as RGB was changed for easy visual interpretation of the land use land cover features. The 

training input shapefile was then created inside the “SCP dock” window of the SCP. The SCP dock 

is an interface in the SCP menu that allows for the creation of regions of interest (ROIs) and 

spectral signatures required for the classification of a band set (Congedo, 2021).  

The regions of interest (ROIs) were created hereafter through an iterative process. The creation of 

each ROI involved drawing of a polygon, covering pixels of the same spectral signature on the 

image being classified. Each ROI corresponded to a LULC Class ID (C ID). The created C IDs 

were then grouped into eight macro class IDs (MC IDs) which represent the eight LULC classes 

in the Bigasha watershed. The identified LULC classes were forests/trees, shrublands, grasslands, 

croplands, built-up areas, water bodies, bare land and flooded vegetation.  

The Google satellite map and the “Display NDVI” option in the SCP dock were used to assign the 

correct LULC classes to the ROIs created. Finally, the KNN algorithm was run to execute the 

classification task. It is important to note that the final classified image was obtained after several 

classification runs in the KNN classifier to improve the accuracy of the classification. KNN 

classifier was chosen for its simplicity, effectiveness (high prediction accuracy) and low 

computational time (Taunk et al., 2019), compared to other classifiers. The classification stages 

discussed above are summarised by the workflow shown in Figure 3.4 below. 
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Figure 3.4 LULC map classification workflow 

c) Accuracy assessment 

According to Plourde & Congalton (2003), it is important for a user to know the accuracy of a 

classified LULC image in order to use it more correctly and efficiently. The accuracy assessment 

for each of the three LULCs was performed using the error matrix method. This is the most widely 

used method for assessing the accuracy of a LULC classification process (Strahler et al., 2006; 

Rwanga & Ndambuki, 2017). This is because the procedures involved in the derivation of the error 

matrix and the subsequent calculations produce four indices which represent the classification 

accuracy (Congalton, 1991) as cited by Manandhar et al. (2009).  

These indices are the user, producer and overall accuracies and Kappa coefficients. To perform the 

accuracy assessment, a point feature shapefile with “Ground truth” and “Reference” fields in its 

attributes table was first created in QGIS. The classified LULC image was then loaded onto the 

same QGIS map canvas having the point shapefile. A stratified random sampling scheme, as 

recommended by Congalton (1991), was then used to collect sample points from each of the eight 

LULC feature classes on the classified image. This sampling technique minimises possibilities of 

under sampling that are often witnessed with simple random sampling method (Congalton, 1991). 

For example, the sampled points on the 2022 LULC classified image is shown in Figure 3.5 below. 
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Figure 3.5 Sampled points used for accuracy assessment on the 2022 LULC image 

After gathering at least 270 sample points from the eight LULC classes, the shapefile was uploaded 

onto Google Earth Pro and its “Reference” field was filled with the actual land cover IDs. Using 

the “show historical imagery” option in Google Earth Pro, an imagery with a close acquisition date 

to that of the LULC image being validated was selected. This was done to minimise the differences 

in the temporal resolution of the classified and reference images.  

The sample size collected from each LULC category depended on the inherent spatial variability 

of the LULC category, as recommended by Congalton (1991). In other words, the larger the area 

of the LULC class, the higher the number of sample points that were collected on it and vice versa. 

The filled point shapefile was then imported to ArcGIS 10.7 software to generate the error matrix 

shown in Table 3.2, in the case of the 2010 LULC image. This error matrix was later copied and 

pasted on an Excel sheet and the user, producer and overall accuracies and the Kappa coefficients 

were calculated using the following expressions:  

User accuracy =   
Number of correctly  classified pixels in each category

Total number of pixels in that category (row total)
∗ 100 

.................(3.1) 

Producer accuracy =  
Number of correctly  classified pixels in each category

Total number of pixels in that category (column total)
∗ 100 ............(3.2) 
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Overall accuracy =  
Total number of classified pixels (diagonal)

Total number of reference pixels
∗ 100 .....................(3.3) 

Kappa coefficient =   
(TS ∗  TCS)  −   ∑(column total ∗  row total)

TS2 − ∑(colum total ∗  row total)
 

.....................(3.4) 

where TS represents the total number of sample points and TCS is the total number of correctly 

classified pixels. 

In case the computed overall accuracy was less than the minimum acceptable accuracy of 85 per 

cent proposed by Anderson et al. (1976) as cited by Manandhar et al. (2009), the image was 

reclassified. Finally, the 1999 and 2010 LULC classified images from the Landsat were resampled 

from 30 m to 10 m, to match with the spatial resolution obtained for the 2022 classified image. 

Table 3.2 Error matrix for assessing the accuracy of the classified image of 2010 

 

NB: Total number of classified pixels (TCS) was 263, total number of reference pixels (TS) was 

272, product of the total number of reference pixels and total number of classified pixel (TS *TCS) 

was 71 536, summation of the product of the column total and row total was 11 280 and finally, 

the square of the total number of reference pixels was 73 984. 

3.3.1.3 Soil map 

The soil map for the Bigasha watershed was created with the help of ArcGIS 10.7 software. Firstly, 

the acquired soil map was loaded onto ArcGIS and it was georeferenced using the administrative 

boundaries shapefile layer for Isingiro district. It was reprojected to the Bigasha watershed’s 

projected coordinate system (WGS 1984 UTM Zone 36S). The resultant map was converted to a 

raster and later to a polygon using the “raster to polygon” spatial analyst tool in ArcGIS. The map 
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was then resampled to 10 m, to match with the spatial resolution obtained for the 2022 LULC 

image.  

The World Reference Base (WRB) soil names in the attributes table of the soil map were then 

converted to the FAO soil symbols that is recognised by the QSWAT+ model. The FAO soil 

symbols that were assigned to the four soil types of the processed soil map were Fo43-2b, Fp10-

2a, Gh7-2a and I-U-c, representing Orthic Ferralsols, Plinthic Ferralsols, Humic Gleysols and 

Leptosols, respectively. The symbol for Lithosols was used to represent Leptosols because 

Lithosols are equivalent to Leptosols in the FAO soil taxonomy (Gliński et al., 2008).  

3.3.1.4 Land use land cover and Soil lookup tables 

The LULC and soil map look up tables were used for linking the land use and soil maps to the 

QSWAT+ model and they were both prepared as comma separated (csv) files. The LULC lookup 

table had a land use text string in its file name and its structure was similar to that of the global 

land uses table in the QSWATPlusProj@2018.sqlite database. This is the recommended land use 

lookup table file structure for the QSWAT+ model (Dile et al., 2022). The lookup table had two 

columns, the land use identifier (LANDUSE_ID) and the SWAT_CODE. The SWAT_CODEs 

assigned to the eight LULC classes in the Bigasha watershed were FRST, RNGB, RNGE, AGRL, 

URBN, WATR, SWRN and WETL for forests/trees, shrublands, grasslands, croplands, built-up 

areas, water bodies, bare land and flooded vegetation, respectively, as shown in Table 3.3 below. 

Table 3.3 The land use lookup table 

 

Similarly, the soil lookup table had the soil text string in its file name and its structure was similar 

to that of the global soils table in the QSWATPlusProj@2018.sqlite database. This is the 

mailto:QSWATPlusProj@2018.sqlite
mailto:QSWATPlusProj@2018.sqlite
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recommended soil lookup table file structure for the QSWAT+ model (Dile et al., 2022). The 

lookup table had two columns, the soil identifier (SOIL_ID) and the soil name (SNAM) columns. 

The SNAMs assigned to the four soil types in the Bigasha watershed soils were Fo43-2b-498, 

Fp10-2a-560, Gh7-2a-57 and I-U-c-3132 for Orthic Ferralsols, Plinthic Ferralsols, Humic 

Gleysols and Leptosols, respectively, as shown in Table 3.4. The “global user soil” file was used 

to assign soil properties to the soils. 

Table 3.4 The soil lookup table 

 

3.3.1.5 Daily observed weather data 

The station information for all the five climatic variables (precipitation, solar radiation, wind 

speed, relative humidity and maximum and minimum temperature) were first prepared in *.txt 

files. Each station file contained the station Id (ID), station name (NAME), latitude (LAT), 

longitude (LONG) and the altitude (ELEVATION). For example, the precipitation station *.txt file 

is as shown in Figure 3.6 below. 

 

Figure 3.6 Precipitation station information for the Bigasha watershed 

The observed weather data (*.txt) files for the climatic variables were then prepared. The 

information included in the observed weather files were the starting date of the measurements and 

the actual measurements. The starting date, 01/01/2000, was written in the first line of the observed 

weather files while the actual weather measurements were written in the succeeding lines, as 

required by the QSWAT+ model. The format in which the daily measurements for precipitation, 

solar radiation, wind speed and relative humidity were written in their respective *.txt files was 
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the same, as shown partially in Figure 3.7, in the case of the precipitation data. The maximum and 

minimum temperatures, however, were both written in one *.txt file but with their daily 

measurements separated by commas, as shown partially in Figure 3.7, as required by the QSWAT+ 

model.  

 

Figure 3.7 Samples of precipitation (left) and temperature (right) text data files 

It is important to note that except for air temperature, the data for the remaining climatic variables 

had gaps. The missing climate data for the days between 1/1/2000 and 31/7/2014 were filled with 

CFSR data while those after July 2014 were filled with -99 (Dile et al., 2022). The periods with 

missing data are shown in Table 3.5 below. 

Table 3.5 Periods with missing observed weather data 

 

3.3.1.6 Observed stream flow data 

The monthly stream flow records for the Kagera river covering a period of 18 years (2001 – 2018) 

were prepared in a Microsoft Excel file. This file had two columns with the same number of rows. 
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The first column had the “Date” when the data was acquired (year and month, written as: 

YYYY/MM) while the second had the monthly “Flow” data itself, as shown partially in Table 3.6. 

The months with missing observed flow data, for example from January 2001 to March 2001 and 

from August 2005 to April 2006, were included in the Excel file since dates are sequential. 

However, their corresponding stream flow data cells were left blank (Dile et al., 2022).  

Table 3.6 Sample of the monthly stream flow data for the Kagera river 

 

3.3.2 Preparation of the CROPWAT 8.0 model input data 

The input data sets required for calculating the irrigation water requirement of the coffee crop in 

the CROPWAT 8.0 model were climatic data (precipitation, relative humidity, minimum 

temperature, maximum temperature, wind speed and sunshine hours) and crop data (Dong, 2018; 

Aish et al., 2021). The monthly weather data of the first five climatic variables listed above, for 

periods with available data were compiled using Microsoft Excel. The monthly precipitation was 

obtained by summing the daily rainfall measurements while the monthly values for relative 

humidity, air temperature and wind speed were obtained by averaging daily measurements. For the 

months where the climate data was missing, CFSR data was used to fill the gaps for periods 

between 2000 and July 2014 while CROPWAT model estimates were used to fill those for periods 

after July 2014.  

An attempt was made to estimate the mean relative humidity (RH) using the procedures described 

in the FAO 56 manual, for areas with tropical climates. This was done because the RH data set 

obtained from the UNMA is usually recorded at 9 am (to represent maximum RH) and 3 pm (to 

represent minimum RH) East African time and hence may not represent the actual peak and 

minimum humidity conditions in the watershed. However, this did not yield meaningful results 
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since the estimated RH values were lower than the measured ones. Therefore, the observed RH 

data from UNMA was used. 

The coffee crop information required in the CROPWAT model was the length of crop growing 

stages, the crop coefficient (Kc), the critical depletion factor (p), the rooting depth (Z) and the yield 

response factor (Ky). These were obtained from the Uganda coffee handbook and FAO Irrigation 

and Drainage papers 33 and 56 (Doorenbos et al., 1979; Allen et al., 1998; UCDA, 2019). The 

value of Ky used in this study was that for citrus since there was no value of Ky given for coffee. 

Afterall, the length of crop growing stages, crop coefficients (Kc) and annual irrigation 

requirements of coffee and of citrus are not significantly different (Doorenbos et al., 1979; Allen 

et al., 1998; Tobergte & Curtis, 2013). 

3.4 Data analysis 

3.4.1 Building of the QSWAT+ model for the Bigasha watershed 

The model was built within the software interfaces of QGIS (version 3.2.29), QSWAT+ (version 

2.2.5) and the SWAT+ Editor (version 2.1.3), using the procedures developed by Dile et al.( 2022). 

The tasks undertaken here were the creation of the new QSWAT+ project, watershed delineation, 

creation of the HRUs, importation of the weather data and running of the QSWAT+ model and 

visualising of the model outputs, respectively. These were performed as follows: firstly, the QGIS 

software was started and the QSWAT+ plugin was opened. The new QSWAT+ project named 

“Bigsam” was then created in the QSWAT+ model interface, as shown in Figure 3.8 below. 

 

Figure 3.8 A display of the QSWAT+ model interface 
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The automatic watershed delineation procedure was then used to delineate the watershed, create 

its streams network, subbasins and landscape units as follows: firstly, the DEM was loaded onto 

the QSWAT+ model interface and the streams/channels were created. The streams network was 

then thoroughly inspected after which two outlet points were defined. These two outlets were then 

reviewed to confirm that they were successfully snapped before the watershed was created. 

The LULC and soil maps, the lookup tables, the “usersoil” table and the slope bands were then 

added onto the QSWAT+ model interface and the HRUs were created, as shown in Figure 3.9. The 

attributes table of the “HRUs shapefile” was then opened and the cross-sectional areas of the HRUs 

were analysed. It was discovered that the majority of the HRUs created under the FRST, URBN, 

WATR, SWRN and WETL land uses had areas less than 0.1 hectares, which may not provide 

adequate catchments for RWH. For this reason, a threshold of 10, 10 and 2 per cent for land use, 

soil and slope, respectively, was applied to eliminate such HRUs. Consequently, the remaining 

number of HRUs were fairly manageable and they comprised of only three LULC classes, namely, 

RNGE, RNGB and AGRL (grasslands, shrublands and croplands), respectively. 

  

Figure 3.9 The HRUs map for the Bigasha watershed 
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The weather generator (which was downloaded together with the QSWAT+ software), weather 

stations information and daily observed weather data were then imported onto the SWAT+ editor 

interface. The SWAT+ editor is a specially designed interface for modifying the QSWAT+ model 

inputs and running the model. The purpose of the weather generator was to fill missing weather 

data and simulate weather parameters in parts of the Bigasha watershed that were located far away 

from Mbarara meteorological station. The simulation and warmup periods ({2000 – 2020} and 3 

years, respectively) and the outputs to be printed and their temporal scales were then specified 

after which the QSWAT+ model was run to simulate the runoff from the Bigasha watershed.  

Since this study was concerned with runoff simulation, the monthly and yearly runoff from the 

two outlet channels (“No. 55” and “No. 68”) mentioned earlier and the annual average runoff 

depths from the HRUs were selected for visualisation of the results of the modelling process. The 

annual average runoff depths from the HRUs were later used to select potential sites for RWH in 

the Bigasha watershed, besides, computing the runoff volumes from those sites. Although the 

Bigasha watershed has two distinct rainfall seasons (MAM and SON), the average seasonal runoff 

depths from the HRUs could not be used to identify potential sites for RWH in this area. This is 

because there were inconsistencies in the onset and recession dates of the seasonal rainfalls across 

the years. 

3.4.2 Model sensitivity analysis, calibration, validation and performance evaluation 

This was performed with the help of SWATPlusCUP, which is the calibration program for the 

QSWAT+ model. Since the model was calibrated using the stream flow data from the Kagera river, 

the QSWAT+ model for the Kagera river basin (KRB) was first built. The calibration was 

performed in line with the protocol prescribed by Abbaspour et al. (2017). 

3.4.2.1 Building of the KRB model and its SWATPlusCUP project 

The steps undertaken to build the KRB model were the same as those followed while developing 

the Bigasha watershed model discussed earlier. The only difference here is in the sources of the 

input datasets particularly the soil, land use and climate data. The resampled soil map with 10 

meters spatial resolution used in this model consists of 31 soil types and it was obtained from the 

FAO Digital Soil Map of the World (DSMW) database (Scale 1: 5 000 000). The land use map 

with eight LULC classes, like that of the Bigasha watershed LULC maps, was clipped from the 

open access global land cover map with a spatial resolution of 10 meters. This map was 
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downloaded from the European Space Agency (ESA-2020) database (Tsendbazar et al., 2021). The 

validated overall accuracy of the clipped map (using Google Earth Pro) was 92.7 per cent and the 

Kappa coefficient was 0.92, which is above the minimum acceptable LULC classification accuracy 

of 85 per cent proposed by Anderson et al. (1976). 

Lastly, the global weather data, covering a period of 15 years (1999 – 2013), with no years of 

missing data, for the 11 weather stations that were identified within the KRB were downloaded 

from the Climate Forecast System Reanalysis (CFSR, for four stations) and the Climate Hazards 

Infrared Precipitation with Stations (CHIRPS, for seven stations) databases. The annual average 

rainfall recorded at each of the 11 weather stations stated above range from 700 – 2 000 mm, which 

is reported by Habiyakare & Zhou (2015) as the annual average rainfall distribution across the 

Kagera river basin. This explains why the climate data from the two databases were selected and 

used to build the KRB model. 

There was only one outlet specified for the entire watershed. This outlet was drawn on the model’s 

main channel located at a point close to the Kagera river gauging station at Masangano (latitude: 

0o 56’21’’ S, longitude: 31o 45’ 48’’ E and elevation: 1133.0 m above sea level). This was the only 

gauging station whose streamflow data was available at the Ministry of Water and Environment 

offices in Uganda. Since the Kagera river is a perennial river, it was expected that the above stream 

flow data would include base flow. However, the information on the source(s) of this base flow 

were not available and thus was not included during the modeling process. 

That said, the base flow was separated from the observed daily stream flow as follows: at first, the 

base flow separation (filter) program developed by Arnold (1999) as cited by Haguma (2007)  was 

used. However, after the filter had made the three passes through the daily stream flow records, it 

was discovered that the filter underestimated surface runoff as partially shown in Table 3.7. This 

was detected from the plotted graph of the estimated monthly surface runoff versus the simulated 

surface runoff (whose values are partially depicted in Table 3.7). The base flow estimates from the 

filter was about 93 per cent of the stream flow which agrees with the base flow estimates (of greater 

than 80 per cent) reported by Haguma (2007), from the use of the same filter in the KRB. 

In the second approach, the constant base flow separation technique was also tested. Here, the 

long-term average low flow of the Kagera river of 85 m3/s reported by Habiyakare & Zhou (2015) 
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was subtracted from the observed monthly stream flow records. The resultant observed monthly 

surface runoff values obtained from this approach were almost three times higher than those 

obtained from the base flow filter as partially shown in Table 3.7 below. 

Table 3.7 Sample of the surface runoff estimates for the Kagera river 

 

Moreover, there was a better agreement between the plotted graph of the observed monthly surface 

runoff obtained by the constant baseflow separation method and that of the simulated surface 

runoff. Therefore, this was the observed monthly surface runoff data that was used to calibrate and 

validate the KRB model runoff simulations for the 15-year period results (1999 – 2013). The 

calibration and validation data were partitioned with the understanding that the mean (standard 

deviation) of the two datasets were not significantly different from each other, that is to say, 16.70 

(18.59) for calibration data and 17.26 (21.23) for validation data. This was done to ensure that 

during calibration and validation, all climate scenarios (wet, average and dry) were captured. 

The new SWATPlusCUP project named “Kag12” was created in the SWATPlusCUP software 

interface, as shown in Figure 3.10. The KRB model simulation results were then imported onto 

the above project and the SWAT parameter estimator (SPE) was selected as the calibration 

algorithm. The model was calibrated for nine years (2005 – 2013), two of which (2005 – 2006) 

were set as the warm up period for the model while validation took six years (1999 – 2004), with 

three years (1999 – 2001) set as the warm up period as well. 
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Figure 3.10 The SWATPlusCUP calibration program interface 

3.4.2.2 Pre-calibration/initial model run in SWATPlusCUP   

This was performed to check whether the developed model could be calibrated successfully. To 

achieve this, a dummy parameter “r_WDPQ.bsn...0...0” was first added to the “Kag12” project 

created. The simulation and printing periods for calibration of the model were then specified. The 

observed monthly surface runoff data for calibrating the model was then added to the above 

project. The simulated monthly surface runoff, for period corresponding to that of the calibration 

data, from the main outflow channel (“No.1”) of the KRB was then selected for extraction. The 

Nash Sutcliffe efficiency (NSE) was then selected as the objective function type and the initial 

model run of one simulation was executed.  

3.4.2.3 Parameter(s) identification and sensitivity analysis 

Considering the behavior and performance of the initial model, 14 parameters listed in Table 3.8, 

were identified from previous studies by Abbaspour et al. (2007, 2017), Arnold et al. (2012), Cha 

et al. (2014) and Kouchi et al. (2017) for the calibration process. 
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Table 3.8 Selected parameters for model calibration 

 

 (Source: Arnold et al., 2012; Cha et al., 2014), where v and r are value and per cent changes. 

CANMX.hru is a parameter that introduces water to the watershed (driving variable). For this 

reason, it was calibrated separately to minimise identifiability problems during calibration. To 

achieve this, the CANMX.hru parameter was added to the “Kag12” project and its absolute range 

(0 – 100) was set. Four simulations were then run and using results of the ‘local” parameter 

sensitivity analysis, the value of CANMX.hru was fitted. The remaining 13 parameters were then 

calibrated. Initially, the parameters were added to the “Kag12” project and an iteration of 300 

simulations was run, as recommended by Abbaspour (2021). A “global” parameter sensitivity 

analysis was then performed from which a decision was made to use all the 13 parameters in the 

subsequent parameter optimisation processes. 

3.4.2.4 Model parameter optimisation and post processing 

The outputs of the first iteration were visualised in this step, specifically the 95PPU graph and the 

values of the three objective functions/efficiency criteria, namely, the NSE, R2 and PBIAS, which 

were used to assess the prediction accuracy of the KRB model. The “Multiple objective function” 

post processing option was used in this study to minimise parameter conditionality problems in 
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the calibrated model, as highlighted by Abbaspour et al. (2017). Since the SPE algorithm is 

iterative, the final calibrated model was obtained after four iterations, each of 300 simulations. The 

results of the “best simulation” after the fourth iteration were then used to assess the accuracy of 

the calibration as well as the goodness of the KRB model. 

3.4.2.5 Model validation 

The observed monthly surface runoff data for validating the KRB model’s predictions was first 

added to the “Kag12” project. The simulation and printing periods for validation of the model were 

then specified. The simulated monthly surface runoff, for period corresponding to that of the 

validation data, from channel No.1 mentioned earlier was then selected for extraction. An iteration 

of 300 simulations was then run using the fitted parameters of the final calibrated model, as 

recommended by Abbaspour (2021). The results of the “best simulation” of the validated model 

were then used to evaluate the prediction accuracy of the KRB model.  

Finally, 10 out of the 14 parameters, viz. GW_REVAP.gw, GW_DELAY.gw, SOL_K().sol, 

SOL_AWC ().sol, CN2.mgt, ALPHA_BF.gw, REVAPMN.gw, CANMX.hru, SOL_BD().sol and 

GWQMN.gw, used to calibrate and validate the KRB model were selected and used to calibrate 

the Bigasha watershed model, using the “NO observation” option of SWATPlusCUP. This was 

done because the Bigasha watershed does not have its own gauged outlet. The selected parameters 

were those that were believed to have influenced surface runoff simulation in Bigasha. It is at this 

point that the annual average runoff depths from the HRUs were extracted and used to estimate 

potential sites for RWH in the Bigasha watershed.  

3.4.3 Rainwater harvesting site suitability analysis 

The four commonly used RWH site suitability analysis criteria/factors, namely, topography 

(slope), soils, land use and rainfall and runoff depth (Ammar et al., 2016), were used to detect 

potential sites for RWH in the Bigasha watershed. The potential sites from each of the three LULC 

maps used in this study were selected from the HRUs with the highest runoff generating capacities. 

These HRUs were identified as follows: firstly, the *.txt file containing the extracted annual 

average runoff depths from the HRUs was opened. The contents of this file were then copied and 

pasted into a new Microsoft Excel worksheet. The columns with undesired information were then 

deleted from the worksheet leaving only those with the runoff depths (“surq_gen”), Unit IDs and 

HRUs names. 
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Similarly, the attributes table of the “HRUs shapefile” was opened in QGIS and its contents were 

copied and pasted into the same Excel worksheet mentioned above. The most relevant information 

from the contents of the attributes table were the HRUs areas, HRUs IDs, LULC classes and soil 

and slope categories. The column with the HRUs runoff depths (“surq_gen”) was then selected 

and its values were sorted in descending order, as shown partially in Table 3.9, in the case of the 

2022 LULC map. 

Table 3.9 Sorted runoff depths from the HRUs of the 2022 LULC map 

 

The values of the sorted runoff depths from the HRUs, their contributing catchment areas and the 

respective land use, soil and slope categories were then thoroughly analysed. A decision was then 

made to select HRUs with an annual average runoff depth of at least 92 mm to constitute potential 

sites for RWH in the Bigasha watershed. This threshold was chosen because the runoff depths from 

the rest of the HRUs were less than 60 mm and thus would require large catchment areas to harvest 

adequate amount of rainwater from them. 

The RWH site suitability maps obtained from the three LULC maps were generated using QGIS. 

This involved deleting the contents of the HRUs whose runoff depths were less than the 92 mm 

threshold, from the attributes table of the “HRUs shapefile” mentioned earlier. All three of the 

RWH site suitability maps were then validated using Google Earth Pro. Finally, the total volume 

of surface runoff that could be harvested from the potential RWH sites was computed as a 

summation of the individual runoff volumes harvestable from the selected HRUs, as illustrated by 

the equation below:  

Total volume of surface runoff  =  ∑ Ai ∗ Ri

n

i=1

 ................................................................(3.5) 
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where i is the selected HRU number, A is the area of the ith HRU and R is the runoff depth of the 

ith HRU. 

3.4.4 Determination of the irrigation water requirement of the coffee crop 

This was calculated using the CROPWAT 8.0 software. The calculation was performed in three 

stages as follows: firstly, the monthly reference evapotranspiration (ETo) for 18 years (2003 –

2020), was computed using the Penman-Monteith method. To achieve this, the monthly weather 

data for four out of the five climatic variables (relative humidity, minimum temperature, maximum 

temperature and wind speed) prepared earlier and the CROPWAT sunshine hours estimates were 

first added to the CROPWAT model. The model then computed both the monthly solar radiation 

and reference evapotranspiration automatically, as depicted graphically in Table 3.10, for the year 

2003. The calculation was performed from 2003 – 2020 to match with the period when the 

QSWAT+ model simulations were printed.  

Table 3.10 Monthly ETo for the year 2003 calculated by the CROPWAT model 

 

In order to incorporate the effects of climate variability and uncertainty on the resultant crop and 

irrigation water requirements, Weibull distribution analysis was conducted on the calculated ETo 

values. In this analysis, the monthly ETo values for the 18 years were first ranked in descending 

order and their respective probabilities of exceedance (POE) were calculated using the Weibull 

equation expressed as: 
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POE = 100 ∗ (
𝑟

𝑁+1
) ......................................................................................................... (3.6) 

where r represents the rank position while N stands for the number of events in the period of record, 

which was 216 months in this case. 

The POE of 25 per cent threshold, which is close to the POE of 33 per cent, used for flood 

frequency analysis in hydrological studies was then selected. The ETo corresponding to the POE 

selected above was later used to compute the crop water requirement of the coffee crop throughout 

the 18-year period studied. This ETo was selected because it caters for high evapotranspiration 

rates whose resultant coffee crop and irrigation water requirements should be met by the 

harvestable rainwater at the Bigasha watershed. Consequently, coffee farmers’ vulnerability to 

crop losses associated with such ETos would be lessened. 

The monthly precipitation data was added to the CROPWAT model in the second stage and the 

effective rainfall for the 18-year period was calculated. The USDA soil conservation service 

method, which is recommended for estimating effective rainfall in water scarce areas (Bokke & 

Shoro, 2020) such as the Bigasha watershed, was used in this study. Finally, the coffee crop 

information, namely, the length of crop growing stages, the crop coefficient (Kc), the critical 

depletion factor (p), the rooting depth (Z) and the yield response factor (Ky) were added to the 

CROPWAT model. The model then calculated both the decadal crop and net irrigation water 

requirements of the coffee crop automatically.  

Coffee is a perennial crop which takes between three and four years before the first harvest. For 

this reason, the total growth season of the crop was distributed across the years, with each year 

taking 365 days in order to match with the yearly rainfall records. It is these 365 days that was 

divided among the four growth stages in the CROPWAT model, with each stage taking 

approximately 91 days. The planting date of the coffee crop was selected as 15th August so that the 

coffee plants benefit from the high SON seasonal rains during their flowering stage. Flowering of 

the coffee plant occurs usually at the start of the third year of its growth.  

The resultant annual crop and net irrigation water requirements of the coffee crop for 18-year 

period were obtained by summing the respective decadal values calculated earlier. The annual 

average gross irrigation water requirement was then computed as a ratio of the annual average net 
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irrigation water requirement to the irrigation efficiency, assuming a drip irrigation system with an 

irrigation efficiency of 90 per cent was used. 

3.4.5 Determination of the potential irrigable area under coffee 

The total area of coffee fields that could be irrigated using the harvestable rainwater at the Bigasha 

watershed was computed from the ratio of the annual average volumes of surface runoff attainable 

from the potential sites derived from the 2022 LULC map to the annual average gross irrigation 

water requirement of the coffee crop as illustrated by the equation below:  

Irrigable coffee field =
Annual average volume of  rainwater harvestable from potential sites

 Annual average gross irrigation water requirement of coffee 
 ..(3.7) 

The runoff volume attainable from the 2022 LULC map was chosen because it gives a better 

representation of the current conditions at the Bigasha watershed compared to those from the 2010 

and 1999 LULC maps. 
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CHAPTER  4: RESULTS AND DISCUSSION 

4.1 Potential RWH sites in the Bigasha watershed 

The number of HRUs selected to constitute potential sites for RWH in the Bigasha watershed were 

62, 125 and 114 out of the original 690, 720 and 995 HRUs that were derived from the 1999, 2010 

and 2022 LULC maps, respectively. As highlighted in the methodology section, the above HRUs 

were those whose annual average runoff depths were greater than 92 mm. There was a high number 

of HRUs in the 720 HRUs category with potential for RWH. This may be attributed to the 

dominance of shrublands (which are good runoff generators) on the 2010 LULC map than the 

other two maps, as shown in Figure 4.1. The results of the RWH site suitability analysis performed 

in this study shows that the dominant land use, soil and slope at the selected potential RWH sites 

were shrublands (RNGB), Leptosols (I-U-c-3132) and >10 per cent slope, respectively, as 

summarised in Table 4.1 below. 

Table 4.1 Summary of the dominant land use, soils and slope at the potential RWH sites 

 

Shrublands are often characterised by sparsely distributed vegetation that offer minimal 

interception to precipitation and thus is capable of generating high surface runoff. However, it is 

important to note that grasslands were the most dominant LULC class in the Bigasha watershed, 

accounting for 78, 73 and 59 per cent of the 1999, 2010 and 2022 LULC maps, respectively, as 

shown in Figure 4.1. This was already an indication that the majority of the Bigasha watershed’s 

area could be poor runoff generators and hence have low potential for rainwater harvesting. 

According to Jia et al. (2020), the presence of surface vegetation on grasslands interferes with 

runoff generation by increasing surface roughness to runoff, lengthening the runoff flow path and 

increasing the soil’s infiltration capacity through the rooting system of the vegetation. 
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Figure 4.1 The 1999 – 2022 LULC maps for the Bigasha watershed 

NB: The overall classification accuracies of the three LULC maps shown above were 92.5, 96.7 

and 94.0 per cent, for the 1999, 2010 and 2022 maps, respectively, all of which are above the 

minimum acceptable accuracy of 85 per cent  proposed by Anderson et al. (1976). 
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The estimated potential sites were dominated by Leptosols because these are moderately fine to 

fine-textured soils with low infiltration rates and thus good runoff generators. The Leptosols (I-U-

c-3132) soil type found in the Bigasha watershed are hydrologic soil group (HSG) C soils. 

Maidment et al. (1993) indicated that HSG C soils have low infiltration rates when thoroughly 

wetted and their layers impede downward movement of water. As shown in Figure 4.2, HSG C 

soils (Leptosols and Orthic Ferralsols) cover up to 76 per cent of the Bigasha watershed’s total 

land area. However, the majority of these areas may be unsuitable for RWH. This is because the 

predominant land uses in the aforementioned areas are grasslands and croplands, which have poor 

runoff generating characteristics. 

 

Figure 4.2 The soil map for the Bigasha watershed 

As expected, the potential RWH sites were identified in areas with slope greater than 10 per cent. 

This is because such steep slopes are characterised by fast flowing surface runoff which reduces 

the time the water needs to infiltrate into the soil (Al-Ghobari & Dewidar, 2021). However, such 

slopes are more susceptible to erosion and necessitate extensive earthworks to install a RWH 

structure. Ideally, areas with slopes less than 5 per cent, that occupied 17 per cent of the Bigasha 

watershed, as shown Figure 4.3 would be potential sites for rainwater harvesting. However, this is 

not the case because the majority of the above-mentioned areas are covered by grasslands and 

Humic Gleysols, both of which have poor runoff generating characteristics.  
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Figure 4.3 The slope map for the Bigasha watershed       

There was no analysis carried out to compare the spatial distribution of the selected potential RWH 

sites and the rainfalls received in the Bigasha watershed. This is because this study relied on point 

rainfall data from a single meteorological station (Mbarara). Nonetheless, the annual average 

rainfall received in the Bigasha watershed over the 21-year study period  was 954 mm, which falls 

within the FAO recommended range of 100 – 1 000 mm annual rainfall for RWH (Nyirenda et al., 

2021). 

Figure 4.4 depicts the three RWH site suitability maps that were developed. When these maps were 

overlaid on Google Earth Pro, it was confirmed that the predicted potential RWH sites fell in areas 

that are dominated by shrublands and hilly terrains as previously discussed. Therefore, there is  

sufficient evidence to accept the argument made by Ammar et al. (2016) that integrating remote 

sensing, GIS and hydrological models provides an accurate method for RWH site selection.  
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Figure 4.4 The 1999 – 2022 RWH suitability maps for the Bigasha watershed 

4.2 Harvestable rainwater from the potential sites 

The potential RWH sites estimated by the 125 HRUs created from the 2010 LULC map were 

capable of generating the highest total annual average surface runoff volume of 2.68 million cubic 

meters (MCM), from a catchment area of 2 596 ha. On the other hand, the potential sites identified 
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by the 114 HRUs created from the 2022 LULC map had the lowest total annual average surface 

runoff volume of 1.39 MCM harvestable from an area of 1 327 ha. In other words, the amount of 

rainwater that could currently potentially be harvested from the Bigasha watershed is 1.39 MCM. 

In summary, at least 2.8 per cent (1 000 ha) of the Bigasha watershed’s total land area of 34 793 

ha is suitable for rainwater harvesting, as shown in Table 4.1. 

One would expect the potential RWH sites identified by the 62 HRUs created from the 1999 LULC 

map, which had the lowest number of HRUs with potential for RWH to generate the least amount 

of surface runoff. However, this was not the case because the 62 HRUs occupied a larger catchment 

area of 1 591 ha which is higher than that occupied by the 114 HRUs. The total annual average 

surface runoff harvestable from the 62 HRUs category was 1.61 MCM. Thus, the assumption that 

potential RWH sites with the highest number of HRUs have the greatest amount of surface runoff 

available is sometimes misleading. 

In fact, this was the reason why undesired HRUs were eliminated from the Bigasha watershed 

model as indicated in the methodology section. Another significant finding was that the simulated 

annual average surface runoff from channel “No.68” (the Bigasha river) was 0.54 m3/s in 2011 and 

2012. This figure corresponds to the 0.5 m3/s annual average surface runoff recorded by Droogers 

et al. (2012) from the Bigasha river between February 2011 and May 2012. It should be recalled 

that above mentioned records were made as part of the Nile Basin Initiative irrigation potential 

assessment project for the Bigasha watershed. The above observation therefore provides enough 

evidence to conclude that the simulated surface runoff from the Bigasha watershed is reliable and 

hence justifying the effectiveness of the QSWAT+ model for runoff simulation. 

4.3 Performance of the Kagera river basin (KRB) model  

The results of the three statistical indices (efficiency criteria), namely, NSE, R2 and PBIAS, which 

were used to assess the performance of the calibrated and validated model for the KRB are shown 

in Table 4.2. Similarly, the plotted “SWAT Graph” of the observed monthly surface runoff data 

versus the simulated runoff of the calibrated and validated model is shown in Figure 4.5. 
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Table 4.2 Summary of the performance of the KRB model 

 

(Source: (Moriasi et al., 2007; Abbaspour et al., 2015; Amin & Nuru, 2020) 

 

Figure 4.5 SWAT graph of the calibrated and validated model of the KRB 

Generally, the overall performance of the KRB model was “very good” when compared to the 

acceptable performance ranges shown in Table 4.2. The model correctly predicted/bracketed a 

reasonable percentage of the Kagera river stream flow data with NSE(R2) values of 0.81(0.82) and 

0.87(0.88) obtained during calibration and validation, respectively. The above prediction accuracy 

is consistent with those reported in the studies conducted in different parts of the world by Harka 

et al. (2020),  Li et al. (2020) and  Adeogun & Sanni (2019) using various versions of the SWAT 

model. Therefore, the QSWAT+ model is not only an effective and reliable tool for surface runoff 

simulation, as highlighted by Bieger et al. (2017), but also for selecting suitable  RWH sites.  
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4.4 Reference evapotranspiration, crop and irrigation water requirements of coffee 

The monthly reference evapotranspiration rates computed by CROPWAT model at the Bigasha 

watershed range from 3.49 to 6.67 mm/day. The ETo that was used for computing the crop and net 

irrigation water requirements of the coffee crop over the 18-year study period was 4.76 mm/day. 

It should be recalled that the above ETo, which had a POE of 25 per cent, accounted for high ETos 

whose resultant irrigation water requirements should be met by the harvestable rainwater at the 

Bigasha watershed. This would safeguard coffee farmers from risks of crop losses associated with 

such high ETos. 

The annual average effective rainfall and crop and net irrigation water requirements of the coffee 

crop computed by the CROPWAT model were 772 mm, 1 632 mm and 860 mm, respectively.  The 

above crop water requirement lies within the range of 1 200 – 1 800 mm of water required annually 

for coffee grown in Uganda (UCDA, 2019), hence justifying the effectiveness of the CROPWAT 

model for irrigation water requirement calculations. Figure 4.6 shows the bar charts for the decadal 

crop and net irrigation water requirements of the coffee crop generated by the CROPWAT model 

for the year 2020. 

 

 

Figure 4.6 The calculated decadal crop and net irrigation water requirements  
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4.5 Potential irrigable area under coffee 

The total area of the coffee fields that could be irrigated annually with the harvestable rainwater 

from the Bigasha watershed was calculated to be 145 ha. This figure was calculated using an 

annual average surface runoff volume of 1.39 MCM (harvestable from the 2022 LULC map), 

which provides a more accurate representation of the current conditions within the Bigasha 

watershed), an annual average gross irrigation water requirement of 955 mm and an irrigation 

efficiency of 90 per cent (assuming the drip irrigation system was used). The 145 ha represents 1.8 

per cent of the current crop production area in the Bigasha watershed and 0.4 per cent of the entire 

watershed.  

Therefore, it could be concluded that RWH for irrigated coffee farming could expand the current 

land under coffee production in the Bigasha watershed by up to 101.8 per cent. This area could be 

expanded even further by converting the grasslands found in parts of the Bigasha watershed, that 

have Leptosols/Orthic Ferralsols and slope less than 5 per cent, to shrublands. This is because as 

seen in the RWH site selection section, the 2010 LULC map, which had more shrublands as 

potential sites than the 2022 LULC map, generated twice as much surface runoff as the latter. 
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CHAPTER 5:  CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion  

• Since the potential RWH sites that were identified from all three of the LULC maps are in 

areas that are dominated by a combination of shrublands, Leptosols and >10 per cent slope, 

it could be concluded that landscapes with such characteristics are best suited for RWH. 

However, the current potential for RWH in the area could have been reduced by grasslands 

and croplands (poor runoff generators), which occupy 82 per cent of the watershed. 

• It turned out that the 125 HRUs that were created from the 2010 LULC map could generate 

the highest volume of harvestable rainwater (2.68 MCM) while the 114 HRUs that were 

created from the 2022 LULC map had the lowest runoff generating potential (of 1.39 

MCM). This is because the 125 HRUs covered a land area that was almost twice as large 

as that covered by the 114 HRUs.  

• It can be inferred that RWH for irrigated coffee farming could increase the current cropped 

area and the cropped area under coffee in this watershed by up to 1.8 and 101.8 per cent, 

respectively, since the estimated potential RWH sites are located in none cropland areas.  

• Considering the high prediction accuracy of the KRB model with NSE(R2) values of 

0.81(0.82) for calibration and 0.87(0.88) for validation, it could be concluded that the 

QSWAT+ model is an effective and reliable tool for simulating surface runoff and thus 

estimating potential sites for rainwater harvesting. 

• Finally, based on the overall land use land cover classification accuracy assessment results 

of 92.5, 96.7 and 94.0 per cent, obtained from the 1999, 2010 and 2022 LULC maps, 

respectively, created and used in this study, it can be concluded that the integration of the 

semi-automatic classification plugin and the K-nearest neighbor algorithm provides an 

effective tool for LULC classification.  
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5.2 Recommendations  

The following recommendations are made from the study: 

• Field visits to the identified potential RWH sites should be conducted to ascertain whether 

the model results are reliable.  

• Silt and sediment traps should be installed at the future RWH reservoirs to minimise 

problems of soil erosion since the majority of the estimated potential RWH sites are located 

in hilly areas.  

• Hydrological data collection in the Bigasha watershed (especially the flow data) should be 

enhanced for future use during validation of models that utilise such data.  

• An analysis may be conducted to compare the spatial distribution of the identified potential 

RWH sites with rainfalls received in different parts of the Bigasha watershed. 

• A detailed irrigation suitability study should be conducted in the Bigasha watershed to 

assess whether all the 145 ha of coffee fields determined from this study could actually be 

irrigated. 

• The grasslands found in parts of the Bigasha watershed, that have Leptosols/Orthic 

Ferralsols and slope less than 5 per cent, may be converted to shrublands to increase the 

potential of RWH in this area. 

• Remote sensing, GIS and the QSWAT+ model may be used to assess the potential of 

rainwater harvesting in other water stressed parts of Uganda since the QSWAT+ model has 

a reliable runoff prediction accuracy. 
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