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ABSTRACT 

This study was undertaken to assess the effects of Metsimotlhabe River catchment Land-use / 

Land Cover dynamics (2006 and 2018) on the inflow and sedimentation into the Bokaa 

Reservoir using the SWAT model implemented as ArcSWAT. The ArcSWAT simulation was 

performed for 13years of recording periods starting from 2006 to 2018 with the first 4years 

used as a warm-up period, 2010 to 2012 as model calibration period, and 2013 to 2015 as model 

validation period. The calibration was performed against flow quantity on the model run with 

2006-Land-use Land Cover (LULC) (Scenario 1) as input and the best parameter values were 

applied to the ArcSWAT through the manual calibration tool in ArcSWAT.  The calibrated 

parameters were also applied to the ArcSWAT project created with 2018-LULC (Scenario 2). 

The statistical model performance measures were computed for the separate periods using the 

SWAT-CUP model. As a result, the ArcSWAT model was well-calibrated against the flow as 

indicated by the statistical analysis. With Scenario 1 the R2 obtained for the calibration, 

validation, and overall periods were; 0.72, 0.89 and 0.82 respectively, whereas in Scenario 2 

the R2 were 0.69, 0.86 and 0.78 for calibration, validation and overall periods respectively.  

The change in LULC that occurred between 2006 and 2018 produced larger peaks of flow and 

total sediment yield from the catchment. The total sediment yield produced for the entire 

simulation period increased by 117.2% when the most recent LULC was used (Scenario 2, 

2018). These changes could be attributed to a 2.27% increase in built-up areas and an 8.0% and 

7.89% decrease in forest and shrubland areas respectively due to the 2% increase in the annual 

population of people in the catchment. A positive correlation with R2 of 0.965 was achieved 

between the sediment yield simulated by the flow-calibrated ArcSWAT and sediment yield 

derived from applying remote sensing spectral analysis. 

Keywords: ArcSWAT, flow, sediment yield, LULC change, Bokaa dam and 

watershed/catchment  
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1. INTRODUCTION 

1.1 BACKGROUND 

Land and water are the greatest natural pair of gifts to mankind as the latter gives value to the 

former. Soil and Water Conservation is vital for controlling nutrients loss from agricultural 

land, contamination of water bodies, and reducing the rates of sediments deposition in 

reservoirs, streams, channels, and ditches (Kebede, 2018). Water is a necessity for most 

productive uses of land (Khan, 2014). The main constraint to agricultural growth in countries 

with arid and semi-arid climates is the availability of water rather than land (El Ghonemy, 

1998). 

As rain falls on saturated ground, or when rainfall intensity exceeds the infiltration rate of the 

soil, runoff occurs, and the water eventually reaches larger waterbodies such as rivers, dams, 

lakes, and oceans. This movement takes place in a catchment, which is also referred to as a 

drainage basin, watershed, or river basin. A catchment defines a zone of land that contains a 

common set of rivers and tributaries draining to a larger waterbody.  Surface water movement 

in a catchment causes erosion by mobilizing the soil and breaking down rock particles. The 

movable rock and soil particles are then carried away from areas upstream and are deposited 

downstream by moving water. This process changes the course of a stream or results in the 

creation of new landforms. The particles deposited in tributaries and then conveyed by 

streamflow are generally referred to as sediments (Ffolliott et al., 2013). The transportation and 

deposition of suspended solid particles by streamflow is then called sedimentation.  

Sedimentation is influenced by several factors of soil erosion that include land-use or land 

cover (LULC), soil condition (erodibility, texture, organic matter content), topography, 

rainfall, watershed area, and the transportation capacity (Wolancho, 2012; Imanparast & 

Hassanpana, 2010). The transported sediments eventually fill the reservoir at a certain rate 

depending on the reservoir design and manipulation of factors that influence erosion in a water 

basin. Sedimentation as an outcome of altered deposit flow regimes is an undesirable influence 

that cannot be eliminated but can be mitigated and sustained by appropriate anti-erosion works 

and the selection of appropriate discharge items (Đorđević & Dašić, 2011). The rate of erosion 

and soil loss in a watershed upstream can be estimated using the information on sediment yield 

at the river's outlet. Polluted runoff is known as one of the leading causes of damage to 

waterbodies (Botter et al., 2007) by transferring weathered elements from their banks by 

flowing streams (Dastrup et al., 2018).  
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On a global basis, substantial changes in LULC patterns in river catchments have occurred as 

a result of continued human development (Wang et al., 2007). These changes are expected to 

have a significant impact on river flows and sediment transport in a given basin (Ma et al., 

2009).  Changes in LULC and climate have an impact on hydrological response dynamics in 

distinct watersheds.  The LULC changes in a catchment can have an impact on water supply 

by modifying hydrological processes such as infiltration, groundwater recharge, baseflow, and 

runoff (Lin et al., 2007). Destructive LULC change can disrupt the hydrological cycle by 

increasing or lowering runoff production or, in certain situations, even eliminating low flow 

(Croke et al., 2004). Surface and subsoil flow rates are affected by ground disturbance. Subsoil 

flow rates are higher in forests than in other types of vegetation, and also, higher subsoil flow 

is experienced in cultivated soils than in uncultivated soils with hard surfaces. However, 

regardless of the vegetation cover, after the earth has been disturbed, especially if native 

organic matter has been removed, subsurface flow rates decrease (Palamuleni et al., 2011). 

Sedimentation is a severe issue for Botswana's agricultural dams, as it affects their storage 

capacity and useful life (Alemaw et al., 2013). Even though every reservoir is designed with a 

specific storage capacity for sediment deposition, known as dead storage, a large portion of the 

sediment may be deposited in areas other than the dead storage (above outlet conduits) for 

many years of the reservoir's life, and this trend cannot be reversed at a low cost. Due to its flat 

topography, Botswana's dam storage capacity is among the lowest in the region (Botswana-

Water-Sector-Policy-Brief, 2012). All perennial rivers in Botswana are shared with 

neighbouring countries. Botswana has low water resources due to the country's aridity, and it 

continues to experience drought years. It also faces increased strain for fresh-water supplies 

due to fast increasing urbanization and climate change, necessitating some actions to address 

the situation (Department of Water Affairs - Ministry of Minerals & Resources, 2013). One of 

these measures is the construction of dams to supplement water resources, which may include 

consideration of dams' active storage capacities. Therefore, it is necessary to protect the 

reservoir structures in the country and hydrological processes taking place in the catchments 

have to be frequently studied. Inflow is expected every rainy season but one has to realize that 

LULC is also changing continuously with time due to the expanding population, which leads 

to the destruction of vegetation followed by the building of settlements and roads. Hydrological 

indicators such as discharge, sediment, and nutrient yields may be utilized to investigate the 

impact of LULC change. Both on-site monitoring and simulation models can be used to obtain 

these indicators. Because on-site monitoring is frequently impractical due to its labour-
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intensive, time-consuming, and costly nature, hydrological simulation modelling is gaining 

favour as a solution to these issues (Pokhrel, 2018). 

Hydrological modelling has a lot of scope in quantifying runoff and soil loss from the hills and 

high slope areas that are inaccessible in a watershed (Ndulue et al., 2015). Although there are 

numerous watershed models to choose from, model selection is based on the application's 

goals, resources available, and data availability. Despite Botswana having a flat topography, 

there are some watersheds in the South-Eastern region of the country with steep slopes and 

degraded woodlands which are the primary causes of soil erosion and sedimentation in 

riverbeds. Some of the land-use practices taking place in these areas include deforestation, 

intensive grazing, and arable agriculture. The topography and change in the land-use practices 

in the region may affect flow volumes in rivers. The integrated outcome of the hydrological 

models together with Remote Sensing (RS) and Geographic Information System (GIS) can be 

of assistance to decision-makers in evaluating the best management practices and designing 

the necessary structures for soil and water conservation to reduce soil erosion, which leads to 

high levels of sediment deposits in dams (Yousuf  & Singh, 2016). The current trend in 

determining runoff and sediment yield from a watershed is to employ physically-based, 

spatially distributed models (Abebe & Gebremariam, 2019; Munoth & Goyal 2020). 

Water scarcity and quality (content of suspended solids) have long been a source of concern 

around the world. (Yan et al., 2013; Huang & Lo, 2015;  Pokhrel, 2018; Zhang et al., 2019). 

The Soil and Water Assessment Tool (SWAT) is one of the most well-known models for 

analysing the impact of land management strategies on water, sediment, and agricultural 

chemical yields in vastly complicated watersheds (Tang et al., 2011). The use of a hydrological 

model to quantify and assess hydrological conditions is currently the most extensively utilized 

method (Xu et al., 2009). The SWAT model is a useful tool for studying the effects of 

environmental changes on hydrology and water resources  (Liu et al., 2017). It is a widely used 

model to determine watershed components (Priyanka & Patil, 2016). In watersheds where there 

is data shortage, the SWAT model is capable of simulating runoff and sediment output well 

(Prabhanjan et al., 2015). Several GIS interfaces have been established for the SWAT which 

includes the ArcView interface (AvSWAT), Microsoft interface (MwSWAT), and ArcMap 

interface (ArcSWAT). However, in this study ArcSWAT was selected for use. 
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1.2 PROBLEM STATEMENT 

Many cities and nations throughout the world are dealing with substantial water supply and 

quality issues, and LULC change is one of the major human activities affecting them 

(Dwarakish & Ganasri, 2015). As the ground cover changes with time due to land 

developments performed by the increasing population, water movement also changes and more 

pollutants are transported by these moving waters. Most rivers in Botswana flow intermittently 

following rainfall events, resulting in river flow experienced only during the rainy season 

(normally between September to March). The southern part of the country experiences a 

shortage of water as the water resources do not match the demand for water due to the low 

annual rainfall received. River basins in the area have rocky surfaces and hills.  

The catchment of Bokaa dam is prone to serious soil erosion problems because of land-use 

practices and its topography as it lies in a zone faced with serious land degradation problems 

(http://www.fao.org/3/y5744e/y5744e08.htm#TopOfPage) which may increase the amount of 

sediment deposition. The accumulation of sediments reduces the water storage capacity of a 

reservoir (Alemu, 2016), and ultimately reduces the capacity for flow regulation which is 

critical for assuring the reservoir purposes of water supply, navigation, and flood control 

(Schleiss et al., 2016). The catchment, which includes major villages of Molepolole, Kanye, 

Moshupa, Goodhope and Thamaga, is adjacent to the City of Gaborone. The dam provides the 

area with water for domestic use. Currently, it acts as an emergency supply whenever there is 

a problem with the North-South-Carrier (NSC) pipeline which conveys water from the north-

eastern part of the country to supply the City of Gaborone and its surrounding areas, which 

comprise a population of 231 592 people (Population & Housing Census 2011 Analytical 

Report, 2014). 

Rapid urbanization and population increase over the past decades has resulted in many surface 

disturbances in the area through the construction of homesteads, industries, and roads. During 

these activities, borrow pits are dug on the earth's surface for the provision of construction 

materials, and this is coupled with the abstraction of sand from riverbeds. Because of 

population growth and the depletion of natural resources by emerging economies, many basins 

throughout the world are being retrograded (Van Rompaey et al., 2002). Large variations in 

streamflow rates and the amount of material transported in river basins are frequently caused 

by increased development and land-use activities (Pazúr & Bolliger, 2017). In the 

Metsimotlhabe River catchment, there has been an observed increase in farming activities 
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which mirrors the population growth in the area. All the above-mentioned activities affect the 

movement of runoff water in the area, both in quantity and quality. For correct predictions of 

sediment transport and deposition, reservoir management, and water treatment procedures, 

monitoring data for sediment transport to, and yield within, reservoirs are essential (Ongley, 

1996). Quantification of dam inflow and sedimentation is thus required for long-term 

sustainability of water resource developments. This will provide useful data for addressing 

problems associated with a reduction in reservoir storage capacity and problems associated 

with the treatment of turbid water. 

1.3 OBJECTIVES 

The objective of this study was to determine the effects of LULC dynamics (2006 to 2018) on 

inflow and sedimentation of the Bokaa reservoir using the SWAT model implemented as 

ArcSWAT. 

1.3.1 Specific Objectives 

The specific objectives of the study were: 

a) To produce LULC maps (2006 and 2018) for the catchment; 

b) To calibrate and validate inflows (ArcSWAT) using gauge data; 

c) To correlate water quality determined (suspended solids) from the flow-calibrated 

ArcSWAT model to satellite observations (Landsat 8 OLI). 

1.4 JUSTIFICATION OF THE STUDY 

Water is a critical resource for Botswana's economic development, yet it is limited and 

expensive to exploit. In terms of potable water, agriculture, fisheries, poultry, piggery, wildlife 

management, and habitat for vital flora and fauna, the Bokaa dam, which is located within the 

Metsimotlhabe River catchment, is extremely important to the city of Gaborone. It serves as 

an emergency supply of water to the Gaborone region when there is maintenance or fault on 

the NSC pipeline which conveys water from north-eastern Botswana to the southern region. 

Because the catchment's resources cross administrative and sectoral planning lines, resource 

use conflicts have arisen in the utilization of land, water, and other natural resources over time. 

(Statistics-Botswana, 2016). The catchment also has some small charco dams which are mainly 

used for agricultural purposes. The majority of inhabitants in the catchment region are farmers 

who rely on small-scale farming for a living. 
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The Metsimotlhabe River catchment has undergone changes in LULC as a result of the growth 

of urban areas and settlements. The dam has also been experiencing reduced inflows, which 

has led to its drying up at times, it was among the Water Utilities Corporation (WUC) dams 

that became completely dry during the 2012/2013 rainy season (Population & Housing Census 

2011 Analytical Report, 2014). High turbidity values are identified in water abstracted from 

the dam into Mmamashia Water Treatment Plant by WUC. An in-depth evaluation is therefore 

needed on the quantities of sediments reaching the dam through streamflow and the effects of 

LULC changes in this area. The results will generate knowledge that could assist in catchment 

management and in designing strategies to minimize sediment deposition in the dam.  

Raletshegwana (2014) assessed the effects of LULC changes on streamflow and catchment 

morphology in the Metsimotlhabe catchment, which drains into the Bokaa dam, and found that 

the streamflow and runoff coefficients within the catchment have increased over time as a result 

of changing LULC. The drainage density of the catchment was found to be increasing with 

time which implies a faster flow of water through the catchment. Also, a study was carried out 

in Metsimotlhabe catchment by Phetolo (2009) which focused on the impact of sand extraction 

on river flow and found that sand extraction is the most likely factor responsible for increased 

flow in Thamaga stream and increased drainage intensity for the entire catchment. This author 

also noticed a decrease in sediment discharge by the streams in the catchment over the study 

period. However, there is an acute shortage of stream pollution documentation resulting from 

sediment transport as the result of LULC on the watershed. It is hoped that this study will 

partially fill this knowledge gap. 

1.5 SIGNIFICANCE OF THE STUDY 

For the prediction, planning, and management of water resources, accurate watershed 

modelling is critical (M. Yu et al., 2011). Also, quantitative assessment of LULC impacts on 

runoff generation is vital for water resource development (Babar & Ramesh, 2015). 

Understanding how LULC changes affect basin hydrology will considerably improve the 

forecasting of LULC dynamics' hydrological effects for long-term water resource management. 

(Woldesenbet et al., 2016).  Water resources project design and implementation require an 

understanding of the magnitude of these changes in watershed hydrology especially for a 

country like Botswana with low and erratic rainfall and limited sites that can be dammed due 

to the flat topography and an ever-increasing population (currently 2.08% growth rate 

(https://www.worldometers.info/world-population/botswana-population/)). 
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2. REVIEW OF LITERATURE 

This chapter gives an overview of models and modelling selection, some of the existing applied 

watershed models and their classification, a description of the SWAT model, its studies by 

different researchers, and provides knowledge of techniques used towards attaining the 

objectives. 

2.1 WATERSHED LAND-USE AND LAND COVER: AN OVERVIEW 

Land-use refers to the purpose for which the land is used, but it does not refer to the land's 

surface cover, whereas land cover refers to the land's surface cover but does not refer to the 

land's usage. Land-use change can lead to adverse effects on ecosystems (Ndulue et al., 2015). 

On a global and watershed scale, LULC changes have a harmful impact on climate and natural 

hazards patterns. Therefore, mapping LULC changes at the watershed scale are needed for a 

variety of uses that includes land and water resources planning and management. The 

watershed LULC directly affects watershed hydrology by influencing the amount of runoff and 

soil loss. Several locations throughout the world are experiencing rapid, broad-scale land cover 

changes (Mas, 1998). The continuous growth of the world population has affected human 

development, thus more land is required to cater to this growth and to feed it. The growth, in 

general, affects land-use change leading to the reduction of forested land or land occupied by 

natural ecosystems (Yalew et al., 2012).  

2.2 RAINFALL-RUNOFF HYDROLOGICAL MODELS 

A runoff model is a series of equations that aid in estimating the quantity of rainfall that 

converts to overland flow as a function of several parameters used to describe watershed 

features (Devia et al., 2015). Understanding, controlling, and monitoring the quality and 

amount of water resources can be made easier via runoff modelling (Wolfe et al., 2017). 

Modelling users can use runoff models to see what happens in water systems as a result of 

changes in pervious surfaces, vegetation, and weather events. Surface runoff modelling can be 

challenging at times due to the complexity of the calculations and the numerous interconnected 

variables involved. 

Universal components of a model include; inputs, governing equations, boundary conditions 

or parameters, model processes, and outputs (Singh (1995), cited by Wolfe et al. (2017)). 

Knapp et al. (1991) highlighted that the rainfall-runoff model must be chosen based on the 

project's goal, data availability, study size, output required, and desired simplicity. A model 

that solely predicts overland flow and ignores subsurface flow is also ineffective if a watershed 
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of concern has large infiltration rates. One of the factors that affect model selection is data 

availability. This is why simpler models are widely used because fine catch characteristics are 

unknown or very hard to explore (Rinsema, 2014). Each model type has limitations that may 

make it inappropriate for a particular project. To identify an appropriate model type to be 

selected, several factors are required: the data requirements review, physical significance, 

usability and spatial resolution. 

2.2.1 History of rainfall-runoff hydrological models 

Hydrological modelling has come a long way since its modest start in the 1850s. Before the 

1960s, modelling in watersheds was mainly confined to modelling individual hydrological 

cycle components (Singh & Frevert, 2003). This was mainly because of a lack of available data 

and limited computing capability. In 1966, the first Watershed model was reported by Crawford 

and Linsley, called Stanford Watershed Model (SWM) which later became HSPF (Hydrologic 

Simulation Package-Fortran) and currently existing as BASINS (Better Assessment Science 

Integrating Point and Nonpoint Sources) (Singh & Frevert, 2003). In later years, several models 

have been developed in the U.S whereas many other simulation models for hydrology have 

been developed mainly in Australia, Canada, England and Sweden.   

Since computers were introduced in the 1960s and computing capacity exponentially grew over 

decades, watershed modelling began to become more comprehensive. Advances were made at 

an increasing pace driven mainly by easy access to nearly unlimited computer capabilities, 

sophisticated devices, RS and GIS capabilities (Singh, 2018). The resulting computer capacity 

made it possible to simulate the entire cycle of hydrology and to start numerical hydrology. 

2.2.2 Model classification  

Researchers categorize and divide models according to different spatial resolutions, type of 

input/output, simplicity of the model, and others. Wolfe et al. (2017) classify rainfall-runoff 

models by the spatial processes and model structure. A rainfalls-runoff model structure is 

determined by the complexity of the control equations for the runoff calculation, while in the 

model, spatial processes are determined by the interpretation of the catchment: as lumped, 

semi-distributed, or fully distributed. 

Another way of categorizing rainfall-runoff models may be based on the scope of the models' 

physical principles. It could be classified as a lumped and distributed model based on the 

model's space and time parameters and as deterministic and stochastic models based on random 

variableness, spatial distribution and temporal changes. (Devia et al., 2015). 
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Knapp et al. (1991) described rainfall-runoff models as event models or continuous simulation 

models. Event models normally predict the runoff of a particular storm event describing a 

relatively short space of time during the hydrological record, while simulation models operate 

continuously for both the rainfall and the inter-storm conditions. 

 

Figure 1: Classification of hydrological models (Dwarakish & Ganasri, 2015) 

 

Table 1: Description of hydrologic models shown above 

Model Class Brief Description 

Stochastic  The output of these models is at least partially random  

Deterministic  Randomness is not considered  

Lumped Generally applied to a single point or a region without dimension for the 

simulation of various hydrological processes (Niel et al., 2003) 

Semi-distributed Partition the whole catchment into sub-basins or HRUs (Daofeng et al., 

2004) 

Distributed  The spatial heterogeneity is represented by grids 

Empirical Contain no physical transformation function to relate input to output 

Conceptual   They are simplifications of the complex processes of runoff generation 

in a catchment 

Physical Able to explicitly represent the spatial variability of the important land 

surface characteristics such as topographic elevation, slope, aspect, e.t.c. 
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Although there are many classification methods, not all models fit into one category because 

they have been developed for a range of purposes (Singh, 1995 cited by (Singh, 2018)). The 

categories are structured according to the model structure including empirical, conceptual and 

physical structures. The choice of a precipitation-runoff model depends on the purpose of 

modelling such as the understanding and answer of specific hydrological process questions; 

the frequency assessment of runoff events; or estimating runoff output for management (Vaze 

et al., 2011). Dwarakish & Ganasri (2015) reviewed current modelling approaches and 

summarized hydrological models into broad classes as in Figure 1. 

2.3 ROLE OF RS AND GIS IN HYDROLOGIC MODELLING 

Better elaboration of physical processes in space and time requires the availability of digital 

products (e.g. distributions of elevation, soil, vegetation) and remotely sensed data (e.g. soil 

moisture, vegetation), along with new expertise for determining temporal and spatial variability 

in precipitation (Daofeng et al., 2004). RS may be used for the digital acquisition of spatial 

information such as soil type and LULC variables that are particularly critical for hydrological 

modelling (Dang & Kumar, 2017). It offers useful information on LULC dynamics because of 

its capability of synoptic viewing and repetitive coverage (Shrestha, 2003). RS methods can be 

utilized to examine satellite imagery and allow a more precise LULC classification. These 

techniques were effectively used in a range of studies in the prediction of streamflow and 

sedimentation to support hydrological models (Im et al., 2007; Yan et al., 2013; Worku et al., 

2017; Pokhrel, 2018). 

The use of GIS has enabled distributed modelling incorporating heterogeneous spatial 

watershed data including land usage, elevation and soil information (Shrestha, 2003; Chaubey 

et al., 2005). It is applied to a hydrologic system to assess the influence due to LULC change. 

Different hydrological modelling techniques enabled GIS users to execute elegant modelling 

and simulation beyond the data inventory and management stage. The rapid public spread of 

GIS can increase the transparency of various hydrological models and help to communicate 

operations and results to a large number of users (Sui & Maggio, 1999). 

2.4 HYDROLOGICAL MODELS 

There are several useful hydrologic and water quality models available (e.g. MIKE SHE, 

SWAT, HSPF, ANSWERS, WEPP, etc.) which can simulate temporal-spatial variations in 

hydrological processes and help to understand the influencing mechanisms behind LULCs (Lin 

et al., 2015).  
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Table 2: Examples of hydrological models with their advantages and limitations 

Model Description / Application Advantages Limitations / 

Drawbacks 

MIKE SHE 

(Systeme 

Hydrologique 

Europeen) 

It simulates the terrestrial water 

cycle including 

evapotranspiration (ET), overland 

flow, unsaturated soil water, and 

ground-water movements (Z. 

Zhang et al., 2008). 

- It simulates the overland 

flow processes commonly 

found in dry regions (Z. 

Zhang et al., 2008) 

 

- Large data requirements 

mean that the model is 

likely to suffer from 

problems caused by 

error accumulation  

 

HSPF 

(Hydrologic 

Simulation 

Programme, 

Fortran) 

The model is a catchment scale, a 

conceptual model whereby 

catchments are divided into 

hydrologically homogeneous land 

segments (Merritt et al., 2003). 

- It does not require detailed 

data on the physical 

dimensions and 

characteristics of the flow 

system (Z. Liu & Tong, 

2015). 

- Uses hourly historic 

weather data which is not 

always available. 

- The calibration of 

parameters in HSPF is a 

strenuous and time-

consuming process (Im et 

al., 2007). 

SWAT 

(Soil & Water 

Assessment 

Tool) 

A physically-based watershed-

scale continuous time-scale 

model, which operates on a daily 

time step (Arnold et al., 2012) 

- Most of the parameters are 

automatically generated 

from GIS data or other 

information and relatively 

easy to adjust with proper 

instruction (Im et al., 2007) 

- Proper model 

implementation requires 

verification of the model 

against known output 

parameters (Yesuf et al., 

2015). 

WEPP 

(Watershed 

Erosion 

Prediction 

Project) 

A process-based, distributed 

parameter, single storm and 

continuous based model used to 

predict surface flow and sediment 

yields from the hill slopes and 

small watersheds (Flanagan & 

Nearing, 1995) 

- Since the model is process-

based it can be extrapolated 

to a broad range of 

conditions that may not be 

practical or economical to 

field tests (Flanagan et al., 

1995). 

- It requires a large data 

input which limits its 

applicability (Rose, 

1998). 

ANSWERS 

(Areal Non- 

point Source 

Watershed 

Environment 

Response 

Simulation) 

A physical model that includes 

landform information, soil, land- 

use, and channel description for 

runoff and sediment transport 

calculation (Beasley et al., 1980) 

- It can be applied over a 

broad range of conditions 

because of its flexibility 

(Beasley et al., 1980) 

- The model is mainly 

designed for agricultural 

catchments.  

- Its applicability is 

limited in many 

catchments by the large 

spatial and temporal data 

requirements (Merritt et 

al., 2003). 
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Choosing an application model should be based on the objectives of use (Z. Zhang et al., 2008). 

Examples and comprehensive information on the model potentials, limitations and 

applicability, are described in Table 2.  Data availability for the study area as the main 

constraint resulted in SWAT being chosen over other models. SWAT was also chosen because 

of its user-friendliness because most parameters are generated automatically from GIS or other 

information and can be adjusted with the correct instructions (Im et al., 2007). It was also 

chosen because of its ability to simulate major hydrologic processes occurring during a rainfall 

event including precipitation, runoff, streamflow, routing through storage reservoirs (Li et al., 

2018). 

2.5 SWAT MODEL 

The Soil and Water Assessment Tool (SWAT) is a long-term model for continuous simulation 

of watersheds (Arnold et al., 1993). It was developed by the USDA Agricultural Research 

Service to predict the impact of land-management practices in large and complex watersheds 

with different soils, topography, and soil management conditions over longer periods (Neitsch 

et al., 2011). Bouraoui et al. (2005) describe the SWAT model as soil, water, sediment, and 

nutrient transformation and fate simulator for agricultural watersheds. Devia et al. (2015) also 

describe SWAT as a complex physically-based model that examines and predicts water and 

sediment circulation and agriculture production with chemicals in ungauged basins. The effect 

of model performance on long-term simulations is said to be more effective. SWAT is an 

adjustment to the SWRRB model (Simulator for Water Resources in Rural Basin) and includes 

a new routing structure, watershed flexibility, the transmission of irrigation water, groundwater 

and lateral flow components (Arnold et al., 1993). SWAT also slots in shallow groundwater 

flow, reach routing transmission losses, sediment transport and chemical transformations via 

streams, pools and reservoirs transmissions. Three main components incorporated by SWAT 

include Sub-basin, Reservoir Routing, and Channel Routing. The sub-basin component 

comprises eight main divisions: hydrology, climate, sedimentation, soil temperature, crop 

growth, nutrients, agricultural management, and pesticides. For entering data parameters the 

SWAT computer interface uses a table layout. As the watershed has no large reservoirs, only 

the inputs to the sub-basin and the channel routing are discussed. 

Yesuf et al. (2015) describe the SWAT model as a continuous river basin/watershed model that 

is semi-distributed, process-based. In agricultural watersheds with different soil, land-use and 

management conditions, it has been developed to estimate the impact of land management 
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methods on water, sediment and chemical returns over long-term periods (Arnold et al., 2012). 

SWAT divides a watershed into several sub-watersheds and then subdivides these into 

hydrological response units (HRUs), consisting of homogenous land-use, soil management, 

topography, and soil (Devia et al., 2015). HRU is a unique combination of land-use, soil and 

slope type in a sub-watershed (Gassman et al., 2007; Neitsch et al., 2011). SWAT produces 

estimates of hydrology and sediment at the HRU level. Water and sediments are summarized 

in each HRU and then routed to the outlet of each sub-basin through the stream network. This 

model was widely applied by researchers in several watersheds to perform different simulations 

worldwide (Gassman et al., 2007). Figure 2 describes processes involved in SWAT modelling; 

 

Figure 2: Application of SWAT model (Quyen et al., 2014) 
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2.5.1 Application of SWAT in hydrological simulation  

It is essential to model the possible impacts of LULC change to proceed with effective water 

resources management (Dwarakish & Ganasri, 2015). Many studies have examined the effect 

of LULC changes in hydrology and water quality at various spatial and temporal levels. Below 

are some of the studies that covered the influence of LULC and other factors in the simulation 

of streamflow and sedimentation or sediment yield; 

Van Rompaey et al. (2002) evaluated the contributions of changes in land-use types to changes 

in streamflow and sediment yield in the Upper Du Watershed (Belgium) using SWAT 

hydrological modelling and PLSR. Changes to farmland, forest and urban areas from 1978 to 

2007 were observed as important land-use changes affecting streamflow, while changes to 

grasslands did not influence either streamflow or sediment outcome. The tactics employed by 

this study simply established the contribution of the changes in land-use to streamflow and 

sediment yields, providing quantitative information to a better knowledge of land and water 

resource management by decision-makers and stakeholders. 

Loi (2010) assessed factors that contribute to reservoir sedimentation, water discharge using 

the SWAT model in Dong Nai watershed, Vietnam. The study mostly focused on the 

conversion of forest land-use to agricultural cropping as it is a serious issue experienced by the 

basin. The impacts of such land-use changes on the surface runoff and sediment yield were 

monitored. The overall performance of the SWAT model in simulating surface runoff, 

sediment yield, over time (daily, monthly, and annually) was outstanding. Simulation results 

indicated that both surface runoff and sediment yield increased when the forest was converted 

to agricultural land. An increase of about 30% and 54% in surface runoff and sediment yield 

respectively, occurred when 21% of the forest area was converted to agricultural land. These 

simulated effects of forest conversion to agricultural land indicate that watersheds in other 

places having the same pattern of land-use are tormented. The author recommends the 

implementation of local and national policies to address this problem. 

Kimwaga et al. (2012) carried out a study that aimed at characterizing the land-use in the 

Simiyu catchment of Lake Victoria and using land-uses of 1975 and 2006 and comparing the 

relative impact of land-use change on sediment loading into the Lake. Characterization of land-

uses was performed using RS package ILIWIS 3.0 whereas SWAT was used to quantify the 

1975 and 2006 land-use scenarios for sediment loading. The results showed an expansion by 

an annual rate of change of 2.9% in agricultural land from 19.33% to 73.43% of the catchment. 
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Moreover, land-use in 1975 generated less sediment load than in 2006. Results show that the 

model underestimated sediment yield in the catchment. 

Bieger et al. (2013) simulated past and future land-use changes in the Xiangxi Catchment 

(China) with the SWAT model to measure hydrological and sediment transport impacts. In this 

study, three land-use maps were used based on images by Landsat TM from 1987, 1999 and 

2007. The main contributors to the earth loss and sediment outcomes were the cultivated 

sloping land. Results of simulation have shown a significant increase in sediment yield and 

surface when areas with slopes < 25% are converted into cultivation.  

An integrated approach involving hydrological modelling and partial least squares regression 

(PLSR) was used by (Yan et al., 2013) to measure the contribution of changes in the different 

types of land-use to sediment yield and streamflow changes. The study was performed using 

land-use maps for China's Upper Du watershed from four periods (1978, 1987, 1999, and 

2007). Between 1978 and 2007, changes in farming, forest, and urban areas had the greatest 

impact on streamflow in the examined basin areas, with regression coefficients of 0.232, 0.147, 

and 1.256, respectively, and a Variable Influence on Projection (VIP) of larger than 1. 

Farmland (with VIP and regression coefficients of 1.762 and 14.343, respectively) and 

woodland were shown to have the greatest impact on sediment output (with VIP and regression 

coefficients of 1.517 and 7.746, respectively). The PLSR technique was found to be 

advantageous and new because it partially eliminates the co-dependency of the variables and 

allows for a more unbiased assessment of how changes in specific land-use categories affect 

streamflow and sediment output. The authors suggested that this approach should be applied 

to other watersheds where time-sequenced digital land-use maps are available. 

Adeogun et al. (2015) did a study that focused on the applicability of SWAT and GIS in the 

prediction of sediment yield of a watershed upstream of Jebba Reservoir in Nigeria. The model 

was simulated using 26 years of climatic data (1985 to 2010) from three climate stations set 

within the catchment. Measured flow data from 1990 to 1995 were used to calibrate and 

validate the model. A suspended sediment sampler USDH-2A was employed to gather 

sediment samples from three places in the watershed from May to December 2013 due to the 

lack of observed sediment data for the area. The samples were examined and utilized to 

calibrate and validate the model spatially. SWAT was then evaluated statistically using R2 and 

ENS. Evaluation of the model revealed that it performed satisfactorily for streamflow and 

sediment yield predictions in the watershed. The results from the study revealed that a properly 
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calibrated SWAT set in a GIS environment is suitable for modelling the hydrology and 

predicting the sediment yield in a watershed. It was concluded that SWAT can be used as a 

decision support tool by water engineers and hydrologists in Nigeria and the surrounding areas 

to help policymakers achieve sustainable sediment and water management at the watershed 

level. 

The SWAT model was calibrated and validated by Son et al. (2015) in Da River Basin, 

Northwest Vietnam using observed data from 1971-1981. The results of the assessment have 

shown that SWAT simulates monthly runoff and sediment output in the study area precisely 

and is effective for studying the effects of land-use changes on runoff and sediment output as 

well as for the identification of critical soil erosion areas. Runoff and sediment were increased 

dramatically by an increase in agricultural land, urban expansion and forest removal, while 

increased forest cover and practices for soil conservation clarified a drop in runoff as well as 

the sediment yield. 

Huang & Lo (2015) applied the SWAT model to evaluate the effects of land-use change on 

soil and water losses from Yang Ming Shan National Park Watershed in northern Taiwan. The 

study simulated the loss of soil and water during two land-use periods (1996 and 2007) with 

the SWAT Model. The model also simulated the future scenario successfully. The study 

indicates that forest land decreased by about 6.9%, agricultural land increased by about 9.5%, 

which influenced sediment yield increase of 0.25 t/ha between 1996 and 2007. The conclusion 

drawn from the study was that human activities deserve more consideration in the evaluation 

of the loss of soil and water due to their inevitable consequences. The government was 

recommended to review land development policies and land-use change detection plans using 

satellite imaging to prevent illicit development. 

Worku et al. (2017) carried a study on modelling runoff–sediment response to LULC changes 

using integrated GIS and SWAT model in the Beressa watershed. Calibration of the model was 

performed with data from 1980 to 1999 while the data from 2000 to 2014 were used for 

validation. LULC maps for 1984, 1999, and 2015 were used in the study, and analysis showed 

that between 1984 and 2015 agricultural and residential areas increased while grazing, 

barren and forest areas decreased. However, between 1999 and 2015, forest cover grew. 

Simulation and calibration of runoff and sediment yield were successfully performed by the 

model. During the periods of the calibration the values of R2, ENS, RSR, and PBIAS were 0.72, 

0.67, 0.52 and 3.9% respectively. The values were 0.68, 0.64, 0.56, and 7.6%, respectively, at 
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validation periods. The conclusion was that LULC changes had a significant impact on 

sediment output and runoff. 

Nilawar & Waikar, (2018) modified the SWAT model to establish key factors influencing the 

streamflow and sediment concentration of the Purna basin in India and the potential effects on 

these factors of future climate and land-use. A SWAT interface domain with GIS was applied 

for a period of calibration between 1980 and 1994 and validation between 1995 and 2005 to 

simulate and determine monthly streamflow and sediment concentration. A sequential 

uncertainty fitting technique (SUFI-2) was further used in the SWAT calibration and 

uncertainty programme (SWAT-CUP) for calibration and validation. With streamflow 

simulation, the model performed well with R2 and ENS values at 0.91 and 0.91 respectively 

during calibration and 0.83 and 0.82 for the validation period. The sediment data for the basin 

were also well-presented, with R2 and ENS being 0.80 and 0.75 for the period of calibration and 

0.75 and 0.65 for validation. SWAT can simulate long-term hydrological dynamics in the Purna 

river basin, according to the research. 

The impact of LULC changes was studied by Pokhrel (2018) from the year 2000 to 2010 using 

the SWAT model.  For calibration, monthly discharge and sediment records were used from 

1995 to 2002 and the remaining monthly data were used for validation from 2003 to 2010. Four 

statistical parameters comprising the R2, ENS, RMSE-observations’ standard deviation ratio 

(RSR), and PBIAS were used for model performance evaluation. The model performed well in 

simulating discharge during the calibration stage as indicated by R2 = 0.88, ENS = 0.90, RSR = 

0.34, and PBIAS = 0.03. The same performance was also attained with sediment simulation. 

Results of comparisons with land-use data between 2000 and 2010 demonstrate a reduction of 

approximately 6.46% of all land-use classes except built-up areas. As a consequence, surface 

water inputs increased by 27 and 5% to streamflow and sediment output respectively. The 

expansion of the built-up areas is assumed to increase the contribution of surface water to 

streamflow, leading to more sediment transportation. This was capable to decrease 

groundwater contribution to streamflow by 25% because of decreasing infiltration in the 

catchment. 

Sinha & Eldho (2018)  studied the impact of changes in historical and forecast LULC for the 

Netravati river Basin in the Western Ghats of India on monthly streamflow and sediment yield 

using a SWAT model and six-time land-use maps (1972, 1979, 1991, 2000, 2012, and 2030). 

The land change modeller with the assumption of normal growth was used for projecting the 
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2030 LULC. The SWAT model analysis, model calibration and validation have shown that 

stream and sediment yield in the watershed could be simulated with reasonable efficiency. The 

spatial extent of the LULC classes of urban, agriculture, and water bodies, increased, whereas 

that of the forest, grassland, and bare land decreased from 1972 to 2030. The streamflow rose 

steadily with changes in LULC by 7.88%, while between 1972 and 1991 the average annual 

sediment yield fell by 0.028% and later rose by 0.029% until 2012. It was found that sediment 

yield may increase by 0.43% from 2012 to 2030. For the sake of better water resources 

management plans, the proposed methodology can help other catchments with temporal digital 

LULCs. 

The effect of LULC change on streamflow, sediment, and water quality was evaluated by 

Boonkaewwan & Chotpantarat (2018) along the Lower Yom River, Thailand. The relative 

impact of point and non-point sources of pollution from multiple-land-use watersheds were 

also accessed. Calibration and validation of the SWAT model were performed using data from 

2000 to 2013. Land-use change resulted in a 13 to 49% increase in runoff in the catchment and 

a 37 to 427% increase in sediment yield. Results show that NO3-N loads in the top and middle 

of the study area doubled, while PO43- ranged between 37 and 377%, reflecting an increase in 

agricultural and urban areas. The study shows that the changes in land-use are closely related 

to the amount of runoff, the yield of sediment and the concentrations of NO3-N and PO43-. 

Munoth & Goyal (2020) discussed the influences of LULC changes on surface runoff and 

sediment yield of the Upper Tapi River Sub-basin, India using SWAT. Four land-use maps for 

1975, 1990, 2000, and 2016 were used for different scenarios in the study. The four different 

SWAT models were used with the equivalent climate data between 1979 and 2013 for 

calibration. Results showed an increase of 18% from 1975 to 2016 for agricultural areas, while 

forest and rangeland have decreased respectively by 7 and 10%. This change can cause 

land and environmental damage to the catchment. The model results were evaluated based on 

the values R2, ENS and PBIAS, which showed an excellent agreement between observed and 

simulated discharge. The findings of this study show that changes in LULC have increased 

surface flow, river discharge and sediment yields. Barren and agricultural land classes for all 

four scenarios that are responsible for the maximum soil erosion in the catchment have 

produced the largest sediment yield. The authors concluded that the results of the study could 

be used in the studied catchment for the conservation of soil and water, and the protection of 

fluvial health. 
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dos Santos et al. (2020) reviewed the SWAT model at the Atibaia river basin in (Brazil) to 

identify land-use-dependent parameters. A sensitivity analysis was performed to determine 

those parameters with a greater influence on the results of the model simulation and how to 

consider future conditions for land-use. The most important parameters on stream-flow and 

sediment output were the initial moisture curve number II (CN), maximum storage canopy per 

land-use (CANMX) and the cover and management factor (USLE-C). The findings 

revealed that identification and correct modification in parameters can provide a realistic 

assessment of the magnitudes of changes in land-use. Such evidence can be used as a tool to 

improve the environmental quality and management of the basin. 

2.5.2 ArcSWAT strengths and limitations 

One of the SWAT's key strengths is its ability to model the relative impacts of change in water 

quantities and quality in management practices, climate and vegetation (Govender & Everson, 

2005). Some other significant calibration and validation issues suitable for SWAT applications 

have been mentioned by Refsgaard et al. (2010), including unrealistic calibration effort due to 

too many model parameters calibrating. Proper model implementation requires verification of 

the model against known output parameters (Yesuf et al., 2015) such as using observed actual 

data experienced in a catchment. One of the challenges attained in SWAT modelling is the 

need of using a wide range of data and hence include new facilities for the efficient storage, 

management and handling of extensive data (Devia et al., 2015). 

2.5.3 Summary of ArcSWAT use 

The SWAT model is a model that is being used worldwide by researchers and hydrologists to 

perform different simulations in different kinds of catchments. China and India are the 

countries in which simulation of runoff and sediment is dominant as it seems that most 

watersheds are gauged in these countries. However, Africa also takes part in making use of the 

model in the simulation of runoff and sediment yield, most simulation studies in Africa were 

undertaken in Ethiopia (Bouraoui et al., 2005; Asres & Awulachew, 2010; Setegn et al., 2010; 

Adeogun et al., 2015; Yesuf et al., 2015; Hailu et al., 2020).  

However, there are few publications of SWAT in Botswana concerning the simulation 

hydrological parameters. The Department of Environmental Sciences at the University of 

Botswana simulated streamflow (Raletshegwana, 2014). Alemaw et al. (2013) carried out a 

study using Revised Universal Soil Loss Equation (RUSLE) that aimed at the analysis of 

prevailing sedimentation processes in dozens of small-dams found in the Lotsane catchment 
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located within the Limpopo River Basin of Botswana and focused on the assessment of annual 

sedimentation rate. Raletshegwana (2014) assessed the effects of LULC changes on streamflow 

and catchment Morphology in the Metsimotlhabe catchment. 

2.6 ArcSWAT INPUT DATA 

2.6.1 Meteorological data 

ArcSWAT meteorological data include daytime precipitation, maximum and minimum 

temperature, solar radiation data, relative humidity and the data on wind speed, which are 

available from records and/or from simulation data (Neitsch et al., 2011). There is a Weather 

Generator tool in the model in which generates daily values for weather from average monthly 

values where only a few meteorological stations in the basin have a full and long record of data 

(Aduna, 2009). The weather generator uses information found in weather station WGN files.  

2.6.2 Topography 

DEMs like Shuttles Radar Topography Mission (SRTM) and ASTER describe land-surface 

topography, which provides vital data on surface-water flow and the interactions of surface 

water and groundwater (U. Khan et al., 2013). The accuracy of the daily runoff and sediment 

output values with different DEM resolutions has been reduced. The choice of input DEM data 

resolution for the SWAT model depends on the output of interest, however, every effort must 

be made to collect and input DEM data at a finer resolution to minimize uncertainties in the 

model predictions (Chaubey et al., 2005). For finer DEM resolutions up to 90 m, SWAT is not 

very sensitive for runoff, but the SWAT outcomes are indeed sensitive for finer DEM 

resolutions for sediment yield prediction (A. S. Reddy & M. J. Reddy, 2015), hence the DEM 

of 90m resolution is found suitable for this study. 

2.6.3 Soils 

The soil's database designates the surface and upper subsurface of a watershed (Hailu et al., 

2020). The model ArcSWAT requires various textural and physicochemical properties of soil, 

such as texture, hydraulic conductivity, bulk density and organic-carbon content for each soil 

type. (Setegn et al., 2008). SWAT input Soil layer can be prepared by field sampling then the 

properties may be identified by laboratory analysis, however, there is a national soil layer 

prepared by FAO which may be obtained from the necessary department (Ministry of 

Agricultural Development and Food Security).  

The soils were mapped under the Soil Mapping and Advisory Services Project of the 

FAO/UNDP and the soil characteristics were classified regarding the FAO Revised Legends 
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of the Soil Map of the World (Tsheko, 2006). These are the physical properties that include 

bulk density, particle size distribution, moisture retention, infiltration characteristics and 

structural stability of the surface soil (Joshua, 1991). 

2.6.4 Land-use / Land Cover 

LULC classification requires a good awareness of ground conditions and is made more difficult 

by changing view angles (Kite & Pietroniro, 1996). Information of land-use is an important 

determinant of hydrologic parameters like runoff, evapotranspiration, soil infiltration and upper 

soil erosion in the field of study (Hailu et al., 2020).  

Classification trees are normally used in classifying different LULC classes. However, the 

maximum likelihood is the most regularly used parametric classifier in practice, because of its 

robustness and its easy availability in almost any image-processing software (Lu & Weng, 

2007). Training data for directly mapping classification classes are usually performed by 

interpreting stacks of Landsat images supplemented by high-resolution images from Google 

Earth (Lu & Weng, 2007; Ying et al., 2017). Ying et al. (2017) outline another way of obtaining 

reference information for training data for classification as to collect field data over time which 

is an impractical option for global studies. However, Google Earth has been the most exploited 

tool in classification by land cover change studies because of the visualizing efficiency of 

historical change trajectories in the areas of interest (Hansen et al., 2011). In this study, Google 

Earth is found to be suitable for both training and validation, with Landsat composed images. 

2.6.4.1 Image classification programmes 

Scientists have made great efforts in developing advanced classification approaches and 

techniques for improving classification accuracy (Reddy, 1996; Bakker et al., 2001). 

Classifying remotely sensed data into a thematic map had remained a challenge due to a variety 

of factors, including the research area's landscape complexity, selected remotely sensed data, 

and image-processing and classification approach (Lu & Weng, 2007). However, different 

commercial software programmes have been developed to ease classification (for example, 

PCI Geomatics, ENVI, ERDAS) and also Freeware is available. 

PCI Geomatics: It is a comprehensive and integrated software that includes RS instruments, 

digital photogrammetry, geospatial analyses, map production, mosaicking, and more. 

(https://www.pcigeomatics.com/#). PCI Geomatics established an easy-to-use and complete 

software that covers user needs for producing high-quality 2D and 3D geospatial information 

for GIS, CAD, and mapping applications (Teodoro et al., 2012). 
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ENVI: It is a programme that visualizes, analyzes, and presents digital imagery of all types. 

ENVI’s complete image-processing package consists of advanced, easy-to-use, spectral tools, 

geometric correction, radar analysis, terrain analysis, raster and vector GIS capabilities, 

extensive support for images from a wide variety of sources, and much more (Teodoro et al., 

2012). The software embraces essential tools essential for image processing across multiple 

disciplines, and it flexibly permits the execution of customized analysis strategies 

(https://vdocuments.site/documents/getting-started-with-envi.html). 

ERDAS (Earth Resources Data Analysis System) IMAGINE: It offers real value and 

enhances RS, photogrammetry, Light Detection and Ranging (LiDAR) analyzing, fundamental 

vector analysis and radar transformation in a single product (https://www.hexagongeospatial. 

com/products/power-portfolio/erdas-imagine/erdas-imagine-remote-sensing-software 

package). 

The three are commercial software programmes that are not freely available. However, PCI 

Geomatica is available in the Institution where the study is carried out, hence it was utilized 

for the classification process. 

2.6.4.2 Methods of image classification 

Unsupervised and supervised image classification are the two approaches used to classify 

images. 

Supervised classification: A variety of supervised classification methods have been applied 

extensively for land-use change analysis throughout the world (Matlhodi et al., 2019). This 

technique depends on a combination of background knowledge and personal experience with 

the study area to a greater extent (Jain & Tomar, 2013). Supervised classification poses a big 

challenge when there are no suitable land-use maps that could serve as reference maps in the 

development of training sites and no field verification data. In supervised classification, 

training samples are selected and the image is classified based on the chosen samples. The 

training samples are key because they will define which class each pixel inherits in the overall 

image (https://gisgeography.com/supervised-unsupervised-classification-arcgis/).  

The maximum likelihood procedure is the most commonly utilized method because of its 

robustness; nevertheless, it has the underlying assumption of a normal (Gaussian) distribution 

of the data within each class (Serra et al., 2003). 
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Unsupervised classification: It produces clusters based on similar spectral characteristics 

inherent in the image (https://gisgeography.com/supervised-unsupervised-classification-

arcgis/). Then, each cluster is classified without creating training samples. The main aim is to 

discover the natural boundaries in attribute space for the number of clusters specified 

(https://www.pcigeomatics.com/geomatica-help/concepts/focus_c/oa_classif_intro_unsuper 

Class.html). The method is suitable when there is a lack of pre-existing field data for the image 

area, and the user cannot precisely specify training areas of known cover type 

(https://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:unsupervised_classific

ation). 

2.6.4.3 Accuracy assessment 

The accuracy assessment process measures the degree to which features shown on a 

classification map conforms to what is on the ground (Foody, 2001). However, to offer a 

reliable classification accuracy report, non-image classification errors should also be inspected, 

especially when reference data are not obtained from a field survey (Lu & Weng, 2007). Google 

Earth provides reference images of high resolution for a wide range of time differences and it 

is time-saving because of no field visiting (Ying et al., 2017).  

The most widely used classification accuracy is in the form of an error matrix (Manandhar et 

al., 2009) as suggested by Story & Congalton (1986). Several accuracy measures such as 

overall accuracy, user’s and producer’s accuracy can be derived from this error matrix. The 

overall accuracy is used to designate the accuracy of the whole classification while the other 

two methods indicate the accuracy of individual classes. User’s accuracy is considered as the 

probability that a pixel classified on the map represents that class on the ground or reference 

data, whereas producer’s accuracy represents the probability that a pixel on reference data has 

been correctly classified (Geremew, 2013). 

Another accuracy indicator is the kappa coefficient, which is the degree to how the 

classification results relate to the values assigned by chance (Ismail et al., 2020). The kappa 

coefficient values range from 0 to 1. If the value equals 0, it denotes no agreement between the 

classified image and the reference image whereas if it equals 1, then the classified image and 

the ground truth image are identical. So, the higher the kappa coefficient, the more accurate the 

classification is (Ismail et al., 2020). 
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2.6.4.4 LULC change analysis 

LULC change is usually performed by applying a change detection procedure. The main aim 

of change detection is to determine the zones on digital images that change features of interest 

between two or more dates (Muttitanon & Tripathi, 2005). Several change detection methods 

have been developed which involve; conventional image differencing, using image ratio, 

normalized difference vegetation index, principal component analysis, multi-date image 

classification, post-classification comparison, manual onscreen digitization (Mas 1998; Al-

doski et al. 2013). 

However, simple LULC change statistics may be used to study the rate at which the LULC 

types changed in a study where the effect of using images of different times as LULC input in 

a hydrological model (Geremew, 2013).  

2.6.5 Development of hydrological response units (HRUs)  

The HRU analysis tool in ArcSWAT is used to load land-use, soil layers, and slope maps to 

the project. It includes divisions of HRUs by slope classes in addition to land-use and soils. 

 A threshold is usually selected in defining the HRU (Geremew, 2013; Paul, 2015). The use of 

threshold levels reduces the number of HRUs in the SWAT model and optimizes the SWAT 

model as well as the computing demand (Winchell et al. 2013). 

2.6.6 Flow data 

Streamflow measurement is mostly significant in estimating the hydrology cycle (Negrel et al., 

2011). Hydraulic structures are practically installed in rivers with a free water level to predict 

discharge based on the measured upstream water level (Goodarzi et al., 2012). A measured 

streamflow datum is essential to calibrate and validate the performance of the SWAT model 

(Hailu et al., 2020). This data is usually available in Hydrological and Meteorological 

organizations where the records are kept for research purposes.  

2.6.7 Water quality 

For water monitoring purposes, sediment can be categorized as deposited or suspended 

(Ongley, 1996).  Deposited sediment is that found on the bed of a river or lake whereas 

suspended sediment is found in water solution from a waterbody. Suspended sediment is a good 

proxy for water quality monitoring due to its close association with other water quality 

parameters (Gao et al., 2018). Methods for water quality monitoring include in-situ, laboratory, 

and satellite measurements (Robert et al., 2018). For in-situ and laboratory suspended sediment 
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measuring, a variety of instruments are available ranging from simple mechanical samplers to 

sophisticated optical and acoustical (electronic) sensors (http://www.coastalwiki.org/wiki/ 

Measuring_instruments_for_sediment_transport). In-situ sampling permits the investigation 

of a wide range of parameters at different depths while RS technologies provide frequent 

synoptic measurements and extend the ability to study remote waterbodies that cannot be 

visited regularly in a cost-effective way (Bresciani et al., 2019). 

Generally, shortage and difficulties to obtain observed water quality data to enable a full spatial 

calibration and validation at the watershed scale is a major concern worldwide (Neitsch et al., 

2011;  Mbajiorgu, 2018). However, different RS water quality evaluation techniques have been 

established and extensively applied (for example,  Wong et al., 2005; Jones, 2006; Brezonik et 

al., 2009; Mao et al., 2012; Bresciani et al., 2019). RS techniques of modelling water quality 

can be separated into empirical and analytical approaches (Wong et al., 2005; Mao et al., 2012). 

The analytical approach reviews the bio-optical model which is based on the absorption and 

scattering of underwater elements and their relationship with spectral wavelengths. The 

empirical approaches correlate the in-situ measurements with satellite reflectance 

measurements at certain wavelengths. These approaches include linear regression, single-band 

method, band-combination method (for example, band-ratio, band difference) (X. Wang & 

Yang, 2019). However, regression analysis is one of the widely used techniques to determine 

spectral reflectance and water quality parameter relationship by selecting derived regression 

models with high R2 values (Jaelani et al., 2016; Pham et al., 2018). The empirical approach is 

universally not applicable but can be applied locally and regionally. The constraint of the 

empirical approach is the requirement of sufficient in-situ data which are not always able to 

acquire in some remote areas.  

RS data have easy access (many moderate images of spatial resolution are free, like Landsat, 

MODIS, Sentinel and MERIS) but requires some processing to convert measured satellite 

radiation to water quality information (Bresciani et al., 2019). The reflectance at many different 

bands is a major suggestion to be used in retrieving total suspended matter (TSM) or turbidity 

(Ouillon et al., 2008). However, Landsat has a better resolution than the other three sensors 

described (Kapalanga, 2015) which makes it applicable on small reservoirs such as the Bokaa 

Dam.  
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2.6.7.1 Landsat algorithms developed to determine water quality estimates 

Turbidity and suspended sediment concentrations are associated with the suspended sediment 

fluxes in lakes, rivers, and reservoirs, and can assist in monitoring the sediment discharge, and 

mostly the sediment budget within watersheds (Robert et al., 2018).  

Turbidity is generally described as a measurement of water clearness and reflects the degree of 

cloudiness by sediment (Wong et al., 2005). Prediction of turbidity using different satellite 

sensors has been widely adopted (Wong et al., 2005; Jones, 2006; Quang et al., 2017; Bresciani 

et al., 2019).  

Suspended sediments have been widely mapped using visible red channels (Wong et al., 2005; 

Siregar et al., 2019). Also, different regression algorithms for TSS concentrations have been 

developed based on single-band and two-band ratios reflectance combinations (Jaelani et al., 

2016; Pham et al., 2018). 

2.7 SWAT CALIBRATION, VALIDATION AND EVALUATION OF THE 

MODEL PERFORMANCE 

The majority of currently used hydrological structures can be classified as conceptual. The 

algorithms used in these frames contain parameter values often without a direct physical 

interpretation. The calibration process is necessary to estimate the model parameters until an 

acceptable level of agreement exists with the system output and model output (Wagener & 

Wheater, 2006). ArcSWAT is a physically-based, continuously distributed model, therefore 

data-intensive and its parameters require calibration and validation (Huang & Lo, 2015). 

With ArcSWAT 2012 (latest version) programme used for this study, sensitivity analysis, auto-

calibration, validation, and uncertainty analysis can be performed using the SWAT-CUP 

software (Abbaspour et al., 2007). The software permits users to select among five optimization 

techniques: parameter solution (ParaSol); generalized likelihood uncertainty estimation 

(GLUE), a Bayesian framework implemented using Markov chain Monte Carlo (MCMC); 

sequential uncertainty fitting algorithm (SUFI-2) and particle swarm optimization (PSO). 

However, the SUFI-2 programme is the most widely used method in SWAT-CUP (Chandra et 

al., 2014; Bonumá et al., 2015; J. Liu et al., 2017; Nkonge, 2017; Luan et al., 2018; de Andrade 

& Ribeiro, 2020) because it is a comprehensive optimization and gradient search technique 

capable of simultaneously calibrating multiple parameters and with a global search function 

(L. Zhang et al., 2019). 
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The first step in the calibration and validation process is the identification of the most sensitive 

parameters for a given catchment area (Arnold et al., 2012).  

2.7.1 Sensitivity analysis  

The objective of the sensitivity analysis is to scan and find the most sensitive parameters that 

represented key physical processes (Abbaspour et al., 2017). The model includes a sensitivity 

analysis of input parameters that identifies sensitive parameters concerning their impact on 

model outputs. Arnold et al., (2012) defined Sensitivity analysis as “the process of determining 

the rate of change in model output concerning changes in model output (parameters)”. This 

analysis is performed before calibration, which adjusts the identified sensitive parameters to 

match as much as possible to the real-world system. Proper attention to the sensitive parameters 

may lead to a better understanding and better-estimated values and thus to reduced uncertainty 

(Lenhart et al., 2002).  

2.7.1.1 SWAT-CUP 

The programme is semi-automated and requires the user to be familiar with the hydrological 

characteristics of the catchment being modelled. The programme links various procedures, 

including Sequential Uncertainty Fitting (SUFI-2) to ArcSWAT and enables Sensitivity 

analysis, calibration; validation, and uncertainty analysis of the ArcSWAT model (Abbaspour, 

2015). The degree to which all uncertainties are accounted for is quantified in the SUFI-2 

programme, is by a measure called the P-factor, which is the percentage of measured data 

bracketed by the 95PPU or 95% prediction uncertainty (Memarian et al., 2014). The strength 

of analysis and calibration of uncertainty is the P-factor. Another way to estimate the strength 

of uncertainty analysis and calibration is to use the R-factor. The R-factor is calculated by 

dividing the average thickness of the 95PPU band by the measured data's standard deviation. 

The goal of the SUFI-2 programme is to use the smallest 95PPU band or uncertainty band to 

bracket the majority of the measured data. When a simulation matches measured data exactly, 

the p-factor is 1 and the R-factor is zero. As a result, bigger p-factor numbers and smaller R-

factor values suggest a simulation with less uncertainty. The lower and upper 95PPU limits 

show the parameter ranges that most closely approximate observed flow during calibration. 

The second step is the calibration process (Arnold et al., 2012). 

2.7.2 Calibration  

Arnold et al., (2012) defined calibration as an effort to better parameterize a model to a given 

set of local conditions, thereby reducing the prediction uncertainty. In short, it is a technique 
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for reducing the gap between model simulation and observation. (Abbaspour et al., 2017). 

Through this procedure, it is assumed that the regional model correctly simulates real processes 

in the physical system (Figure 3). 

 

Figure 3: Conceptualization of model calibration (Abbaspour et al., 2017)  

The ArcSWAT model can be calibrated manually or automatically. The perfect model 

calibration contemplates water balance (peak flow, baseflow) and sediment and nutrient 

transport because calibrating one constituent does not ensure adequate simulation of other 

constituents during validation (Moriasi et al., 2007). The available data should be considered 

since the availability of a complete set of hydrologic and water quality data is rare. 

Manual calibration involves visual comparison of observed and simulated data (Tolosa, 2015). 

According to Balascio et al. (1998) cited by Moriasi et al. (2007), manual calibration uses trial 

and error to adjust the parameters and closeness is evaluated with several criteria and especially 

recommended for the application of more complicated models in which a good graphical 

representation is a prerequisite. Manual calibration is tiresome and impractical for large, 

heterogeneous catchments with many parameters. Consequently, numerous calibration 

methods have been established to fine-tune adjustable model parameters within user-specified 

parameter limits to match estimated output to observed hydrologic data (Abbaspour, 2015). 

The use of a numerical algorithm to obtain the optimum of a numerical goal function is called 

automatic calibration (Boyle et al., 2000). This is done by running the model through a variety 

of combinations and permutations of parameter levels to discover the optimum parameter set 

that meets the accuracy criterion. All automatic calibration programmes have their advantages, 

and their usefulness is largely in line with the complexity of both the hydrologic model and the 

watershed, as well as the computing resources (Barnhart et al., 2018). In this thesis work, 

automatic calibration is considered for the application.  
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The final step is validation for the component of interest (Arnold et al., 2012). 

2.7.3 Validation 

Validation is described as a demonstration that determines how a given site-specific model is 

capable of making sufficiently accurate simulations; (Arnold et al., 2012; Moriasi et al., 2012). 

Well-calibrated distributed hydrologic models can be validated on the same catchment with 

different data series or within the sub-basins where data is available for validation. 

2.7.4 Evaluation of the model performance 

Many statistics are existing to evaluate SWAT simulation results, for example, Coffey et al. 

(2004) describe nearly 20 possible statistical tests that can be applied to access SWAT 

predictions, including coefficient of determination (R2), Nash–Sutcliffe model efficiency 

(ENS), root mean square error (RMSE), and others. Nevertheless, the most commonly used 

statistics have been the R2 coefficient and the ENS coefficient (Yang et al., 2015). The SWAT-

CUP 2019 model can perform these graphical and statistical procedures. According to Moriasi 

et al. (2007), the R2 is calculated by regressing the rank (descending) of observed versus 

simulated constituent values for a given time step and the ENS is calculated as: 

                𝐸𝑁𝑆 =  1 −
∑ (𝑄𝑜𝑏𝑠 − 𝑄𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑄𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠𝑎𝑣)2𝑛
𝑖=1

 
Equation 1 

Where; 

Qobs = observed inflow, 

Qsim = simulated flow in m3/s, and 

Qobsav = average observed flow in m3/s 

Hydrologists evaluate model performance to; a) provide a quantitative estimate of the model's 

ability to reproduce historic and future watershed behaviour; b) to provide a means for 

evaluating improvements to the modelling approach through adjustments of model parameter 

values, model structural modifications, the inclusion of additional observational information 

and representation of important spatial and temporal characteristics of the watershed and c) to 

compare current modelling efforts with previous study results (Krause et al., 2005). The two 

statistical methods to be employed for model evaluation are; R2 and ENS as described by Arnold 

et al., (2012). 
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2.7.4.1 Correlation of sediment concentrations simulated by ArcSWAT and derived 

from satellite images 

Due to the lack of sediment concentration records, calibration and validation of sediment 

concentrations are not possible. However, as an effort to evaluate sediment concentration 

simulated by the model, these simulated values may be compared to those derived from satellite 

images using widely applied correlation statistics such as the regression coefficient (R2) and 

root mean square error (RMSE) (Jaelani et al., 2016; Hariyanto et al., 2017; Pham et al., 2018; 

Siregar et al., 2019).  
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3. MATERIALS AND METHODS 

This chapter covers the description of the study area, analysis of different climatic conditions, 

the hydrological model used, and the methodology adopted to accomplish the aims of the study.  

3.1 STUDY AREA 

3.1.1 Location of the watershed  

The study was carried out on the Metsimotlhabe River catchment which lies between the 

latitudes 24°15′′0′ S and 25°00′′0′ S and the longitudes 25°05′′0′ E and 26°02′′0′ E. The location 

of the Metsimotlhsbe River catchment is shown in Figure 4. The watershed area that was 

delineated with ArcSWAT is about 3 610 km2.  

  

Figure 4: Map of the study area and its location in Botswana 

3.1.2 Topography, soil and geology 

The topography of the area is more or less undulating uplands with a slope from southwest to 

northeast, which is crossed by watercourses with hills and rocky hardveld. The elevation of the 

catchment lies between 946m and 1413m as shown by the elevation map (Figure 5).  
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3.1.3 Water resources 

The Metsimotlhabe River catchment is one of the catchments contributing to the flows of the 

Limpopo River Basin. Metshimotlhabe river is the main tributary that contributes to the inflow 

with other small tributaries that drains into the Metsimotlhabe river such as the Kolobeng river. 

There are more than 100 agricultural dams within the catchment that are mainly used to water 

livestock (Phetolo, 2009).  

3.1.4 LULC 

The catchment is made up of built-up areas, areas of agriculture, water bodies/dams as well as 

some tourism-related areas (Raletshegwana 2014). Vegetation is the savanna type with a lot of 

woody species and is dominated by tree spices which are mostly the acacias (Raletshegwana, 

2014) and it is used for grazing livestock including goats, sheep, cattle and donkeys 

(https://www.botswana-info.com/country/town/951/bokaa). 

3.2 INPUT DATA COLLECTION AND PROCESSING FOR ArcSWAT 

3.2.1 Meteorological data 

Meteorological data from the study area that was available for use include daily rainfall (mm) 

for three stations that fall inside the study area (Moshupa, Sir Seretse Khama Airport [SSKA] 

and Molepolole) and daily minimum and maximum temperatures (⁰C) for one station (SSKA). 

The data (which covers the entire simulation period 2006 to 2018) was obtained from Botswana 

Meteorological Services and was used as continuous point data input into ArcSWAT. The data 

was prepared in an Excel sheet and saved in a format accepted by ArcSWAT (.txt).  Other 

weather parameters (wind speed; solar radiation and humidity) were simulated directly by the 

ArcSWAT model while precipitation and temperature data were fed into it. 

3.2.2 Digital elevation model (DEM) 

A Shuttle Radar Topographic Mission (SRTM) DEM of resolution 90m by 90m was utilized 

for providing topographic parameters for the study. A tile of the DEM that covers the study 

area was prepared with the Raster Projections and Transformation tools in ArcMap. The DEM 

preparation started by Defining its projection to D_WGS_1984 then it was projected to 

WGS_1984_UTM_Zone_35S, further, the DEM was resampled to 30m to match other datasets 

used. The DEM was also used to obtain the watershed slope categories using ArcGIS tools by 

dividing the slope into 3 classes (0-3%; 3-9%; and >9% (ArcSWAT maximum slope value is 

9999%)) as shown in Figure 5. The slope classes were then used in the HRU Analysis stage in 

ArcSWAT to create multiple slopes. 
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Figure 5: Slope map and DEM of the Metsimotlhabe River catchment  

 

 

Figure 6: Soil types found in the study area 
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3.2.3 Soil data 

The soil map layer obtained from the Ministry of Agricultural Development and Food Security 

was reclassified into the Agricultural Research Institute (ARS) land type survey (the different 

soil classes as defined by ARS) as per the SWAT Input/output Documentation version 2012 

(Arnold et al., 2012). The soil classes identified were Lithosol, Arenosol, Luvisol, Regosol and 

Vertisol as shown in Figure 6. ArcMap tools such as dissolve and merge were utilized to 

produce the five soil types in the study area. A look-up table was then prepared to link the five 

soil types to the SWAT database.  

3.2.4 Land-use / Land Cover data 

The LULC data was derived from two Landsat images (for 2006 & 2018), acquired from the 

United States Geological Survey (USGS) website. These were pre-processed (Collection 1; 

Level 1) images. For 2006, Landsat 5 image was downloaded and for 2018, Landsat 8 image 

was downloaded. There was a wide range of Landsat images accessible for download but the 

issues of availability and accuracy were observed in choosing the images. For instance, Landsat 

5 operated from 1984 to 2013 producing images of high accuracy for the entire period. Landsat 

6 failed to operate upon its launch in 1993, whereas Landsat 7 started operating from 1999 to 

date but it encountered some malfunctioning since 2003 and started producing missing data. 

Landsat 8 was then launched towards the end of Landsat 5 in 2013 and it is producing images 

of high quality even today (2020) ( https://landsat.gsfc.nasa.gov/a-landsat-timeline/).  

3.2.4.1 LULC mapping 

This study employed the use of Geomatica version 2018 in preparing LULC data for input to 

ArcSWAT. The process of LULC mapping was performed following the method described in 

the Geomatica Training Guide of 2016. Training data for directly mapping LULC was 

delineated as class labels by interpreting stacks of Landsat images (for 2006, Landsat 5 image 

was used and for 2018, Landsat 8 image was used) supplemented by high-resolution images 

from Google Earth corresponding to the dates Landsat images were captured. Only a single tile 

of Landsat images covered the entire watershed area (Path_172; Row_77). A global training 

data set for LULC classification was developed through visual interpretation and on-screen 

delineation of LULC classes. Landsat false-colour composite images, as well as Google Earth 

time slider photos, were also used to help interpret the data. Two LULC maps (2006 & 2018) 

were produced and they were cleaned and smoothed in ArcMap by applying the Generalisation 

analysis functions to eliminate misclassified features and remove unwanted noise. 
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3.2.4.1.1 Image classification  

The process of classification was initialized as a session in Focus in which Geomatica II 

software is utilized. Supervised classification following the Geomatica Training Guide (2016) 

was employed, which involved the following stages; training sites and ground cover, and 

training site analyses. The training sites were collected based on the researcher’s 

physiographical knowledge of the area with the help of high-resolution images of Google 

Earth. In addition, image enhancement and composition were applied for better discriminating 

the land cover classes. The maximum likelihood algorithm was used for classification. Figure 

7 illustrates the supervised image classification steps that were adopted.  

Tiles of Landsat images (2006 and 2018) were clipped using a rectangular extent of the study 

area and the City of Gaborone falls inside the rectangular extent of that clip which made it 

easier to classify different types of residential areas. This was done to reduce the size of the 

image that was classified and to improve classification accuracy. Initially, 10 LULC classes 

were developed which were then merged into five LULC classes in the ArcSWAT database as 

shown in Table 3. 

3.2.4.1.2 Post-classification filtering  

Post-classification filtering of image data is used to eliminate noise from a thematic dataset. 

An FMO filter was applied on the classified images in PCI Geomatica then the image was 

imported to ArcMap. The images of the study area were clipped from the rectangular extents 

that were classified in PCI Geomatica. Generalization analysis was performed using ArcMap 

whereby Majority filter, Boundary clean and Nibble functions were applied.  

3.2.4.1.3 Accuracy assessment  

The method carried out involved comparing the classified image to a reference image of high 

resolution from Google Earth. An equally stratified random set of points (30 points each class) 

was generated from the classified images using ArcMap and classification results were 

compared with the ground information (Samanta & Pal, 2016; Phinzi, 2018). Google Earth was 

used to complement found observations because it can be adjusted to match the year on which 

the image was taken. An error (confusion) matrix accuracy assessment was performed.  
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Figure 7: Image classification steps carried out using Geomatica II 

 

Table 3: LULC classes prepared 

Initial LULC classes Areas where training sites were 

collected 

Merged 

LULC classes  

ArcSWAT 

name 

Waterbodies Dams Water WATR 

Sewage ponds Sewage ponds in Gaborone city 

Residential Residential areas in villages Built-up URBN 

Industrial Industrial sites in Gaborone city  

Shrubs Thorny shrubs mostly growing 

between cultivated land  

Shrubland SHRB 

Tree dominated (hills) Trees on the sides of the hills, 

appeared as a shadow in the 

images 

Forest - 

dominated 

FRSD 

Tree dominated (rivers) Tall trees found along the river 

Cultivated land Cultivated agricultural fields that 

were bare 

 

Barren or 

sparsely 

vegetated 

 

BSVG 
Bare Empty cleared land on the city 

and borrow pits 

Sparsely vegetated Bare land covered by few shrubs. 
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3.2.4.2 LULC Change analysis  

A table that shows the subtraction of areas of LULC classes/types of the latest classified image 

from LULC classes of the initial classified image was created in Excel (2018 of. 2006). 

3.2.5 Hydrological data 

3.2.5.1 Streamflow data 

Monthly dam level gauge data of the Bokaa dam acquired from the Department of Water 

Affairs and Sanitation (DWAS) and Water Utilities Corporation (WUC) was used to derive the 

flow data for the study period. Monthly data for the entire study period was available. However, 

only dam level data was available and overflow or spillage was not recorded, which means that 

the inflows were under-estimated whenever the dam was at full capacity and inflow occurred 

which then spilt away. The data was studied to determine the longest continuous period that 

the dam did not reach full capacity. A period of six years was identified (2010 to 2015) which 

was then considered for calibration and validation.  This period was split into two halves for 

calibration (2010 to 2012) and validation (2013 to 2015) of the model. The data was processed 

in Excel to identify the monthly inflows of the dam with the help of Equation 2: 

𝑄𝑖𝑛 =  ⧍𝑄 + 𝑄𝑜𝑢𝑡 Equation 2 

Where;  

Qin = monthly inflow, 

⧍Q = monthly change in flow measured by the stage level, and 

Qout = monthly flow out from the dam through evaporation, seepage and abstraction (trends 

were provided by WUC). 

3.2.5.2 Sediment data 

Water quality data of the water abstracted from the Bokaa dam which is an outlet of the study 

area was obtained from WUC. The data was limited to turbidity in Nephelometric Turbidity 

Units (NTU) and total dissolved solids (TDS, in mg/l). The data was insufficient for calibration 

and validation of the ArcSWAT model because of its inconsistency and gaps as well as the fact 

that the data needed for calibrating ArcsSWAT are total suspended solids (TSS) which were 

not available from any organisation that files hydrological data. However, the water quality 

simulated by the ArcSWAT model was correlated to the water quality of water from the dam 

retrieved from satellite images. 



 

38 
 

Turbidity and suspended solids concentration data were derived from surface reflectance from 

Landsat 8 operational land imager (OLI) images which consist of nine spectral bands. 

However, the interest was in the first five spectral bands (433 nm, 482 nm, 562 nm, 655 nm 

and 865 nm) because they were utilized in the regression algorithms which were applied. 

Surface reflectance (unit-less) is the fraction of incoming solar radiation that is reflected from 

the earth's surface back to the Landsat sensor (https://www.usgs.gov/core-science-

systems/nli/landsat/landsat-collection-2-level-2-science-products). 

Selection of satellite images required that cloud cover be less than 10% on dates that correspond 

to the inflows that occurred to the Bokaa dam. Most images that had a cloud cover of less than 

10% were for the dry season when there was no flow and only six radiometrically and 

geometrically calibrated images (Collection 2, Level-2) meeting these selection criteria were 

downloaded from the USGS website. Landsat Level-2 science products are produced from 

Collection 2 Level-1 inputs that meet the <76 degrees Solar Zenith Angle constraint and take 

account of the mandatory auxiliary data inputs to produce a scientifically viable product. 

Digital number (DN) values were converted to physically meaningful values (surface 

reflectance) using the Raster Calculator tool in ArcMap. Scaling factors that came with the 

metadata (MTL) file from the downloaded images were used to rescale the raw DN value to 

surface reflectance. Equation 3 shows the algorithm of the scaling factor that was used:                                             

𝑅𝑟𝑠 = 𝑀𝐿(𝐷𝑁) + 𝐴𝐿 Equation 3 

Where; 

Rrs = surface reflectance 

ML = a multiplicative factor (0.0000275) and 

AL = an additive factor (-0.2) provided in the MTL file. 

Surface reflectance at 10 random points in the area covered by water in the Bokaa reservoir 

was averaged and the best regression algorithms reported in the literature were applied to 

determine the total suspended solids (TSS) of water in the reservoir.   

3.3 DATA ANALYSIS METHODS 

3.3.1 Study approach 

First of all, input data such as the LULC map (2006), soil and slope maps were prepared with 

ArcGIS software. The ArcSWAT model version 2012 was then applied to simulate water 

discharge and sediment yield. The model was calibrated and validated against water discharge 
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using SWAT-CUP software. Finally, LULC in 2006 was substituted by LULC in 2018 to assess 

the impact of LULC change on water discharge and sediment yield. However, because in-situ 

data on water quality, including sediment yield, was lacking, the sediment yield calculated by 

the calibrated model using the two LULC maps was compared to water quality data acquired 

from Landsat images. The steps involved are summarized in Figure 8: 

 

Figure 8: Steps followed when developing the ArcSWAT model for the catchment 

3.3.2 Watershed delineation 

Inputs entered into the ArcSWAT model (soil, DEM and LULC maps) were organized to have 

the same spatial characteristics (UTM Zone 35S) and re-sampled to 30m resolution. The first 

step in creating ArcSWAT model input is to create a new SWAT project in the SWAT Project 

Setup tool where all the work will be saved.  The step that follows is the delineation of the 

watershed from a DEM. In this process of delineation, a watershed is divided into discrete land 

and channel segments for the analysis of the behaviour of the watershed. The Metsimotlhabe 

River catchment was partitioned into several sub-basins (15), for modelling purposes following 

the Arc SWAT user guide by Winchell et al. (2010). This process involved five major steps: 

DEM setup, stream definition, outlet and inlet definition, watershed outlets selection and 

definition, and calculation of sub-basin parameters. For the stream definition, the DEM-based 

option was chosen to determine flow direction and accumulation. For the outlet selection, a 
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point was created at the Bokaa dam location and it was used to delineate the watershed.  Figure 

9 shows the ArcSWAT tools used in watershed delineation: 

 

Figure 9: Watershed delineation window 

3.3.3 Hydrological response units (HRUs)  

HRUs are created using the HRU analysis tool. LULC and soil maps were loaded into the 

model and LULC types and soil types were linked to the model using the look-up tables that 

were prepared and Reclassification was performed for both maps to correspond with the 

parameters in the ArcSWAT database.  Then slope percentage classes were derived from the 

DEM using the Multiple Slope option whereby three classes were formed (0 to 3, 3 to 9 and 9 

to 9999). The slope classes were also reclassified and then all the reclassified inputs were 

overlaid. The step that followed was HRU definition where Multiple HRUs were chosen and a 

threshold value of 2% was chosen for each of land-use, soil, and slope, as shown in Figure 10. 

HRUs were then created to represent the heterogeneity of catchment characteristics. 

3.3.4 Write meteorological data 

Metrological data was then loaded into the model in text (tab-delimited) format. The ArcSWAT 

database was linked to the created layers’ data to find all the parameters necessary for 

estimating the streamflow and sediment yield at each HRU. Data for three rainfall stations and 

one temperature station that fall inside the catchment were loaded into the model whereas the 

data for relative humidity, solar radiation and wind speed were simulated by the weather 

generator tool. Following this, the input tables were written, and the model was set up and the 



 

41 
 

model run was performed in monthly time steps. Details for the model run performance are 

shown in Figure 11. SWAT Output files were then imported to the database and a SWAT check 

was initiated to examine the hydrology of the watershed. 

 

Figure 10: HRU definition window 

 

Figure 11: Setup for the model run 
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3.3.5 Hydrology modelling in ArcSWAT 

When rain falls, it can be intercepted and retained in the canopy of vegetation or fall to the 

ground. (Bokan, 2015). The hydrology model provides estimates of runoff volume and peak 

runoff rate, which, with the sub-basin area, are utilized in determining the runoff erosive energy 

variable. Water on the surface of the soil penetrates the profile of the soil or flows as the surface 

runoff. Runoff moves to stream channels relatively quickly and contributes to short-term 

stream response. Infiltrated water may be kept in the soil profile and subsequently 

evapotranspirate or it may slowly find its way to the surface water system via underground 

pathways (Neitsch et al., 2011). 

The first step in developing the hydrological model is defining the basin or watershed 

boundaries. The demarcated basin is further sub-classified into several HRUs with a unique 

grouping of LULC, slope, and soil factors. Hydrological parameter simulation at each HRU is 

performed by employing the following water balance equation given by (Adeogun et al., 2015): 

𝑆𝑊𝑡 = 𝑆𝑊 + ∑(𝑅𝑖 − 𝑄𝑖 − 𝐸𝑇𝑖 − 𝑃𝑖 − 𝑄𝑅𝑖)

𝑡

𝑖=1

 

Equation 4 

 

Where; 

 SWt = final soil water content (mm),  

SW = water content available for plant uptake, which is equal to the initial soil water content 

minus the permanent wilting point water content (mm),  

t = time in days,  

Ri = rainfall (mm),  

Qi = surface runoff (mm),  

ETi = evapotranspiration (mm),  

Pi = percolation (mm), and 

QRi = return flow (mm).  

3.3.6 Modelling sediment loading in SWAT 

SWAT predicts sediment yield for each HRU with the modified universal soil loss equation 

(MUSLE) which evolved from the universal soil loss equation (USLE) developed by 

Wischmeier and Smith (1965, 1978) as cited by Neitsch et al. (2011). While the USLE uses 
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rainfall as an indicator of erosive energy, MUSLE uses the quantity of runoff to simulate 

erosion and sediment yield (Kimwaga et al., 2012). The SWAT MUSLE was utilized to 

determine the amount of sediment at the HRU level as expressed in Equation 5: 

                      𝑃𝑠 = 11.8 (𝑄 ∗ 𝑃𝑝𝑒𝑎𝑘 ∗ 𝐴)
0.56

 𝐾𝑒𝑟 ∗ 𝐶𝑐𝑜 ∗ 𝑃𝑒𝑟 ∗ 𝐿𝑆 ∗ 𝐶𝐹 Equation 5 

Where;  

Ps = the sediment yield on a given day (metric tons),  

Q = the surface runoff volume (m3),  

Ppeak = the peak runoff rate (m3/s),  

A = the HRU area (ha),  

Ker = USLE soil erodibility factor,  

Cco = USLE cover and management factor,  

Per = USLE erosion control practice factor,  

LS = USLE slope and gradient factor, and  

CF = coarse fragment factor. 

3.3.7 Trend analysis of hydrological and meteorological data 

3.3.7.1 Data quality checking and validation 

Non-homogeneity resulting from either natural or man-made changes to the gauging 

environment, as well as inconsistency resulting from systematic errors while recording, are 

both important for effective time series analysis (Wijesekera & Perera, 2012). Users of 

hydrological must be aware of the risk of observation mistakes, especially when undertaking 

statistical analysis. Hydrological data quality is managed through reliability checks and 

correction of missing data and anomalous values. 

3.3.7.1.1 Data selection 

Acquired data records always have variable quality and record length which necessitates the 

selection of records to retain a few qualities and considerably long records for the intended 

study. The data selection process is done a) to obtain a spatially representative data set for the 

determination of streamflow indices and b) to have the longest and most continuous time series 

for inter-annual variability analysis concerning land-use patterns. The selection criteria were 
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mainly based on a) record length, b) continuity of records and c) spatial evenness of the 

distribution of river gauging and recording stations. Some weather data of the study area were 

abandoned because of short record length data, and some lacked continuity of records. 

3.3.7.1.2 Filling missing data 

For weather data, the missing data was generated by a weather generator tool.  The 

ArcSWAT weather generator model WXGEN input file contains statistical data needed to 

generate representative daily climate data for the sub-basins. No data were missing in 

temperature data for the whole study period (2006 to 2018). However, there were some 

gaps of missing data in the rainfall records. Where these were outside the rainy season, a 

zero was recorded while a negative 99 (-99) was inserted for the missing data within the 

rainy season. This value tells ArcSWAT to generate precipitation for that day.  

3.3.7.1.3 Data quality checking and validation. 

The accuracy of the results of the study depends on the quality of the input data used in 

data analysis. Data validation is a process that determines the technical usability of the 

analytical data.  Validation rules should be used to cleanse data before use, to assist with 

the reduction of “garbage in - garbage out” scenarios ( https://www.safe.com/what-is/data-

validation/). The integrity of data was ensured by checking the range, consistent use of 

expressions and presence of null values. 

In this study, the main data for which it was necessary to check for quality and usability 

were meteorological and hydrological. Temperature data were visually screened for values 

that fall outside the expected range and it was found that that the dataset was fine. Rainfall 

data was also screened and records of erroneous rainfall amounts (such as higher than 

500mm per day, not typical in Botswana) were identified and removed.  An omission of a 

decimal point was observed in one of the stations for data records of two rainfall seasons. 

This was corrected by putting a decimal point where it was necessary. 

3.3.8 Statistical measures for the evaluation of results 

The SUFI-2 programme in SWAT-CUP was used for sensitivity analysis, calibration and 

validation of the SWAT model for the Metsimotlhabe River catchment as it performs 

efficiently in large scale time-consuming models. The inflow data measured in the Bokaa 

reservoir were the input to SWAT-CUP. Graphical and statistical procedures (R2 and ENS) were 

used to evaluate the SWAT model performance several times until values fell within acceptable 

ranges recommended by Moriasi et al. (2007).  
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4. RESULTS AND DISCUSSIONS 

4.1 LULC 

4.1.1 Production of maps 

Figure 12 shows the LULC maps for 2006 and 2018 that have been produced from Landsat 

TM and OLI_TIRS imagery classification respectively. Table 4 summarizes the individual 

class areas and change statistics for the two periods from which it can be seen that there was 

an increase of built-up and barren/sparsely vegetated areas over the 13years of the study period 

whereas water, shrubland and forest-dominated areas decreased.  

By comparing the built-up areas from the two LULC maps in Figure 12, the built-up area 

represented 3.67% of the total watershed area in 2006 which increased to 5.93% by 2018 which 

is associated with the annual district population growth rate of about 2% (Central Statistical 

Office (CSO), 2012) (Kweneng and Southern districts contributes the biggest area of the 

watershed). Population growth encouraged developments such as the expansion of industries, 

accommodation, and roads/pavements. These developments may also result from rural-urban 

migration to Gaborone city, which in turn overspills into neighbouring settlements (Keiner & 

Cavric, 2004) in the Metsimotlhabe River Catchment. This finding is in line with the increase 

in built-up areas in the Gaborone dam watershed which is adjacent to the study area (Matlhodi 

et al., 2019). Miller & Hess (2017) concluded that urbanization altered the rainfall-runoff 

response of a previously rural or low urban density catchment. 

Barren/sparsely vegetated areas showed the highest LULC increase of about 8% of the total 

catchment area over the study period. This LULC type consists of cultivated land, bare land 

and sparse vegetation. This could be as a result of land cleared for cultivation or as yet unbuilt 

housing, coupled with increasing bare land due to the establishment of borrow pits for gravel 

mining and other industrial developments.  The trend of expansion of agricultural land 

irrespective of the economic status and location of the country has been noted by Bessah et al. 

(2019).  Matlhodi et al. (2019)  found that expansion in croplands near the study area has been 

mainly at the expense of the shrubland category which might have also been the case in the 

Metsimotlhabe River catchment.  

On the other hand, the areal coverage of waterbodies decreased slightly, by 0.31km2 or 0.01% 

of the total area during the study period. This is in line with the decrease in dam level observed 

from monthly dam level data acquired from WUC matching the time the Landsat images were 
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Figure 12: Extent of Land-use / Land Cover types in the study area 

 

Table 4: Area of LULC types, 2006, 2018 and (2018 – 2006) 

LULC types 2006 2018 2018 - 2006 

Km2 % Km2 % Km2 % 

Waterbodies (WATR) 6.29 0.17 5.98 0.17 -0.31 -0.01 

Built-up (URBN) 132.43 3.67 214.22 5.93 81.79 2.27 

Shrubland (SHRB) 1671.54 46.30 1590.58 44.06 -80.96 -2.24 

Forest-Dominated (FRSD) 647.24 17.93 358.58 9.93 -288.67 -8.00 

Barren / Sparse Vegetation (BSVG) 1152.68 31.93 1440.82 39.91 288.14 7.98 

TOTAL 3610.17 100.00 3610.17 100.00   

 

captured (July 2006 and July 2018). In July 2006 the Bokaa dam level was at 85% of full 

capacity whereas in 2018 the dam level was at 73% full capacity. Reduction in dam level is 

usually associated with a reduction in the water surface coverage of reservoirs.  The decline in 

dam water levels increases the bare land areal coverage (Matlhodi et al., 2019), and as the 

margins of the Bokaa dam were exposed over the period of this study, the area of bare land 
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and/or that with sparse vegetation would have increased. Furthermore, these effects may have 

also occurred with other small dams in the catchment as they dried up. 

Natural vegetation (shrubland and forest-dominated) displayed an overall decrease in the 

catchment during the study period. Reasons for the decline in natural vegetation in the areas 

around the city are the cutting of live trees for fuel, excessive cutting of firewood by 

commercial dealers and, the continuous allocation of new farmland because of rising 

population pressure (Dahlberg, 2000). However, shrubland area losses were previously found 

to be mainly to croplands in the Gaborone dam watershed (Matlhodi et al., 2019), which is 

most likely to be the case in this study. Forest-dominated areas experienced the highest loss of 

coverage by about 8% of the watershed area with shrubland recording about a 2% loss. Forest-

dominated coverage loss to shrubland is observed on hills in the catchment as it is visible in 

the northern part of the study area in the maps shown in Figure 12. This may be due to the 

harvesting of fencing materials (poles and droppers) for croplands as it is observed that people 

in the catchment are moving away from using shrubs (tree branches) to protect their farming 

fields and livestock kraals and are instead erecting fences using wire.   

These LULC changes may affect water movement in the watershed in different ways. For 

example, the increase in the bare land area may cause soil erosion and leaching and/or runoff 

of nutrients and agricultural chemicals in the watershed to groundwater, streams and dams 

(Foley et al., 2005). The conversion of natural vegetation to built-up areas increases impervious 

areas, increases runoff, generates pollution and alters the configuration of the watershed (D. 

Yu et al., 2013; McGrane, 2016).  

4.1.2 Accuracy assessment 

The accuracy assessment was executed using an error confusion matrix to determine the 

correctness of the classified images. Using field validation and Google Earth images as a 

reference, randomly selected points were compared with the corresponding LULC 

classification. Accuracy indicators such as overall accuracy, user’s accuracy, producer’s 

accuracy and the kappa coefficient were determined for both classified LULC maps as 

indicated in Table 5 and Table 6. 

The overall accuracy in this study is greater than 80% for both classified images. However, a 

high percentage of overall accuracy does not indicate how the accuracy is distributed across 

the individual categories and cannot be used to judge the accuracy of a classified image (Story 

& Congalton, 1986). 
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Table 5: Accuracy assessment results for 2006 LULC map 

 REFERENCE DATA USER’S 

ACCURACY WATR URBN SHRB FRSD BSVG TOTAL 

C
L

A
S

S
IF

IC
A

T
IO

N
 

D
A

T
A

 

WATR 30 0 0 0 0 30 100.0% 

URBN 0 25 2 1 2 30 83.3% 

SHRB 0 0 26 0 4 30 86.7% 

FRSD 0 0 4 25 1 30 83.3% 

BSVG 0 0 2 0 28 30 93.3% 

TOTAL 30 25 34 26 35 150  

PRODUCER’S 

ACCURACY 

 

100.0% 

 

100% 

 

76.5% 

 

96.2% 

 

80.0% 

 OVERALL 

ACC.= 89.3% 

 KAPPA COEF.= 0.87 

 

Table 6: Accuracy assessment results for 2018 LULC map 

 REFERENCE DATA USER’S 

ACCURACY WATR URBN SHRB FRSD BSVG TOTAL 

C
L

A
S

S
IF

IC
A

T
IO

N
 

D
A

T
A

 

WATR 30 0 0 0 0 30 100.0% 

URBN 0 23 3 1 3 30 76.7% 

SHRB 0 0 29 0 1 30 96.7% 

FRSD 0 0 0 30 0 30 100.0% 

BSVG 0 1 3 1 25 30 83.3% 

TOTAL 30 24 35 32 29 150  

PRODUCER’S 

ACCURACY 

 

100.0% 

 

95.8% 

 

82.9% 

 

93.8% 

 

82.2% 

 OVERALL 

ACC.= 91.3% 

 KAPPA COEF.= 0.89 

 

4.1.2.1 Producer’s and User’s accuracy 

In this study, the overall result of the producer’s accuracy ranges from 80% to 100%. The 

lowest values for class accuracies were in the barren/sparsely vegetated LULC type and are 

probably due to misclassification of pixels resulting from the similar spectral values of different 

land cover classes. The user’s accuracy ranges from 76.7% to 100%. Built-up areas (URBN) 

had the lowest value which was due to some misclassification, because of the similarity in 

spectral properties of some residential areas and sand which falls under barren or sparsely 

vegetated (BSVG) LULC class. Also, reeds growing in sewages ponds looked similar to forest-

dominated (FRSD) which caused confusion between WATR and FRSD because some training 

sites for water were taken from sewage ponds. 
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4.1.2.2 Kappa coefficient and overall accuracy 

The kappa coefficient and overall accuracy for the two LULC maps used in this study are 

greater than 0.8 or 80% which according to Landis & Koch (1977) cited by Mango (2010), 

represents a strong agreement between the classification map and the ground reference 

information (thus, kappa values >0.8 [or 80%] represent strong agreement; 0.4 to 0.8  [or 40 to 

80%] represent moderate agreement; and values <0.4 [or 40%] represent poor agreement).  

Both of the statistical accuracy measures for the 2018 LULC map are greater than the values 

for the 2006 LULC map (0.89>0.87) which is probably due to the greater spectral resolution 

of Landsat 8 images than Landsat 5 images (2006-Landsat 5 image had seven spectral bands; 

2018-Landsat 8 had 11 spectral bands). This outcome was also observed on the images 

classified by Matlhodi et al. (2019) while classifying the LULC of an area that is adjacent to 

the study area.  

The overall classification accuracies for 2006 and 2018 are 89.3 and 91.3% respectively. The 

overall accuracy was higher than the kappa coefficient in both LULC maps. The reason behind 

this difference is because they incorporate different information, the overall accuracy 

incorporates the major diagonal only and excludes the omission and commission errors (Mango 

2010). 

4.2 FLOW ANALYSIS (RUNOFF) 

4.2.1 Sensitivity analysis 

Sensitivity analysis was performed on flow parameters of ArcSWAT in monthly time steps 

with observed data obtained from the capacity stage level of the Bokaa reservoir. After a 

thorough pre-processing of the required input for the ArcSWAT model, flow simulation was 

performed for 13 years of recording periods starting from 2006 to 2018. The first four years 

were used as a warm-up period, and the simulation period for both calibration and validation 

(2010 to 2015) was then used for sensitivity analysis of hydrologic parameters. 

Sensitivity analysis was performed before automatic calibration to determine which, amongst 

a few selected parameters, affect basin hydrology the most and to compare with literature. This 

study applied the auto-calibration method only. The identification of sensitive parameters was 

performed using the SUFI-2 programme on SWAT-CUP with the global sensitivity analysis 

method (Abbaspour, 2015). The results of the sensitivity analysis were used to identify the 

most sensitive parameters that affected the hydrology of the watershed. Six parameters were 

selected for the sensitivity analysis with default lower and upper parameter bounds as shown 
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in Table 7. These included six parameters that commonly affect the basin hydrology. The upper 

and lower bounds were chosen with reference to Arnold et al. (2007) and El-Sadek & Irvem 

(2014). The t-statistic was used to measure the sensitivity of the parameter, where larger 

absolute values are more sensitive. The p-values indicate the significance of the sensitivity, 

where p-values close to zero (0) are more significant.  

Table 7: Parameters that were involved in Sensitivity Analisis, Calibration and Validation 

Parameter Upper and 

Lower Bounds 

Calibrated 

Value 

Rank 

Abbreviation Description 

CN2.mgt Initial SCS CN2 value -50 to 50 -9.0125 1 

SURLAG.bsn Surface runoff lag coefficient 0 to 24 0.763175 2 

RCHRG_DP.gw Deep aquifer percolation fraction 0 to 1 0.000125 3 

GWQMN.gw Threshold water depth in the 

shallow aquifer for flow 

0 to 5000 2666.25 4 

GW_DELAY.gw Groundwater delay time 0 to 500 429.85 5 

ALPHA_BF.gw Base flow alpha factor 0 to 1 0.36125 6 

 

 

Figure 13: Sensitivity of the parameters involved in calibration and validation of flow 

 

 

The results of the sensitivity analysis are shown in Figure 13, from the SWAT-CUP output 

display with the sensitivity of the six parameters in descending order. At the top is the base 

flow alpha-factor (ALPHA_BF) with the highest p-value of about 0.82 and the t-statistic of 



 

51 
 

about 0.2. These p-value and t-statistic values indicate that ALPHA_BF was the least sensitive 

parameter. The most sensitive parameter was found to be the Curve Number (CN2) which is at 

the bottom in Figure 13, with a p-value of 0 and a t-statistic of about -15.8.  

The surface runoff lag coefficient (SURLAG) and CN2 were identified to be the parameters 

that affect the basin hydrology most because they had p-values less than 0.5 and this indicates 

that the null hypothesis can be rejected (Grath, 2016). The other four parameters were 

considered less sensitive because they had p-values greater than 0.5 (Figure 13). In most 

studies, the CN2 is found to be amongst the most sensitive parameters involved in ArcSWAT 

flow simulation (Geremew, 2013; Tolosa, 2015; Abe, 2017; Anaba et al., 2017; Abusanina, 

2018; dos Santos et al., 2020 and others). In Table 7 the six parameters are listed in descending 

order of importance in affecting the hydrology of the Metsimotlhabe River catchment.   

4.2.2 Flow calibration and validation 

ArcSWAT was auto-calibrated using the Latin Hypercube Sampling approach from the SUFI-

2 in the SWAT-Calibration and Uncertainty Procedure (SWAT-CUP) package. The calibration 

was performed on the ArcSWAT model run with 2006-LULC (Scenario 1) as input.  First, the 

parameters were auto-calibrated against the flow for the period of 2010 to 2012 until the model 

simulation results were acceptable as per the statistical model performance measures as 

recommended by Moriasi et al., 2007 (Table 8). Thus, if the statistics values were below the 

'satisfactory' level (Table 8), the calibration procedure was repeated. When the statistics values 

were above 'satisfactory', the model was considered calibrated and was then validated.  Once 

the statistics of both calibration and validation were above ‘satisfactory’, the model was 

considered ready to simulate the scenarios. 

Next, the best parameter values that were calibrated automatically using the SUFI-2 technique 

were applied to the ArcSWAT project through the manual calibration tool in ArcSWAT and it 

was re-run for the whole simulation period.  The calibrated parameters were also applied to the 

ArcSWAT project created with 2018-LULC (Scenario 2) and the model was re-run for the 

whole simulation period.  The simulated output was then divided into the validation and 

calibration periods and the statistical model performance measures were computed for the 

separate periods using the SWAT-CUP model. The TxtInOut directory of the simulations 

performed with calibrated parameters by ArcSWAT was imported to the SWAT-CUP and the 

calibrated values for each parameter shown in Table 7 were set as the minimum and maximum 

(same value was used as minimum and maximum for each parameter) in the parameter 
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information stage. Statistical measures were also applied on the whole simulation period 

(calibration + validation periods) for the two calibrated ArcSWAT projects. 

The most efficient model (model structure with set parameter) is generally assumed to be 

representative of the under investigation natural system.  Quantitative statistical analyses (R2 

and ENS) were determined to evaluate the model performance as described by Moriasi et al., 

(2012). Table 9  shows the results of the statistical model performance measures. 

Table 8: The streamflow model performance statistics (monthly time step)  

Performance Rating ENS 

Very Good 0.75 < ENS ≤ 1.00 

Good 0.65 < ENS≤ 0.75 

Satisfactory 0.50 < ENS≤ 0.65 

Unsatisfactory ENS ≤ 0.50 

 

Table 9: Performance of the flow-calibrated model for the Metsimotlhabe River catchment  

 Scenario 1 (2006-LULC) Scenario 2 (2018-LULC) 

 Calibration 

Period 

Validation 

Period 

Overall 

Period 

Calibration 

Period 

Validation 

Period 

Overall 

Period 

R2 0.72 0.89 0.82 0.69 0.86 0.78 

ENS 0.71 0.80 0.77 0.42 0.82 0.66 

 

The results show that the highest R2 obtained was 0.89, obtained during the validation period 

when the ArcSWAT was run with 2006-LULC (Table 9). The lowest R2 was 0.69, which was 

obtained during the calibration period in Scenario 2 when the model was run with 2018-LULC. 

According to Moriasi et al (2007), R2 describes the degree of collinearity between simulated 

and measured data. It ranges from 0 to 1, with high values indicating less error variance and 

values greater than 0.5 are considered to be acceptable. Thus, all the R2 values obtained were 

considered acceptable. For both scenarios, R2 was found to be lower during the calibration 

period than the validation period.  

The ENS shows how well the plot of observations versus simulated data corresponds to the 1:1 

line (Moriasi et al., 2012). The highest ENS value obtained is 0.82 which was obtained during 

the validation period of Scenario 2 (Table 8). The lowest ENS value (0.42) was obtained during 
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the calibration period of Scenario 2 and the model performance was ‘unsatisfactory’ beacause 

the ENS value was less than 0.50.   According to Moriasi et al (2007), the performance of the 

calibrated ArcSWAT model was ‘very good’ during the validation period of the two Scenarios 

with ENS values greater than 0.75. Also, a “very good” performance was observed during the 

period when the statistical measures were applied in an overall simulation period of Scenario 

1. The calibrated model performance was ‘good’ during the calibration period of Scenario 1 

with an ENS value of 0.71 (that is, when the actual calibration process was performed). ‘Good’ 

performance was also obtained during the overall simulation period of Scenario 2.  

4.2.2.1 Output: hydrographs 

The hydrographs of simulated and observed monthly discharge for the two scenarios were 

plotted with the corresponding monthly rainfall received in the catchment. The hydrographs 

show four major peaks of observed and simulated flows that occurred in Feb-2010, Dec-2012, 

Mar-2014 and Nov-2015 (Figure 14 and Figure 15) in the two scenarios. The peaks correspond 

with the high monthly rainfall received in the watershed. The highest observed flow peak was 

3.566m3/s and it was experienced in Nov-2015 and it was in line with the maximum monthly 

rainfall received in the watershed (136.6mm).  However, the maximum simulated flow for the 

two scenarios occurred during the calibration periods in Apr-2010 which were 2.295 and 

3.372m3/s for Scenario 1 and 2 respectively. Seasonality was visible on the two hydrographs 

because flow occurred only during the rainy season. No or low flow was observed or simulated 

during the dry months.  

All of the statistical parameters displayed better performance of the calibrated model in 

Scenario 1 than in Scenario 2 (Table 9). The statistics also indicated that the calibrated 

ArcSWAT model performed better in the validation period than the calibration period. The 

extended dry season periods that occurred in 2014 and in 2015 (each of about seven months) 

which were accurately simulated may have played a role in the better performance that was 

achieved during the validation period (Figure 14 and Figure 15).  
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Figure 14: Monthly rainfall and hydrograph for overall simulation using 2006-LULC 

 

 

 

Figure 15: Monthly rainfall and hydrograph for overall simulation using 2018-LULC 
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Yuan & Forshay (2019) noted that input variables, especially rainfall, may cause uncertainties 

in model results and in this study, any unidentified errors associated with rainfall data would 

have been in the calibration period. In mountainous regions, the effect of input uncertainty can 

be very large (Abbaspour, 2015) and the Metsimotlhabe River catchment is hilly. Nevertheless, 

the statistical results for the overall period shown in Table 9 imply that the calibrated 

ArcSWAT model can simulate the hydrology of the Metsimotlhabe River catchment 

successfully because of the overall ‘good’ performance established. 

4.2.3 Effects of LULC on flow simulation 

To evaluate the effects of LULC on flow and sediment yield, LULCs in two different years 

(2006 and 2018) were used as input variables in the ArcSWAT model. The results showed that 

peak flows were under-estimated by the calibrated model during Scenario 1 when using 2006-

LULC whereas they were over-estimated in Scenario 2 when 2018-LULC was used (Figure 

14 and Figure 15). This was influenced by the changes in LULC that occurred during the 12-

year interval. Also, low flows were over-estimated except during the long dry periods when no 

flow occurred.  

The increase in LULC (built-up and barren/sparse vegetation) might be reflected by the 

increase in flow estimates that occurred in Scenario 2.  Guzha et al. (2018) observed that 

cultivated catchments produce higher flow discharge as compared to forest catchments. This is 

the situation in the Metsimotlhabe River catchment, where barren/sparse vegetation was largely 

made up of bare cultivated lands, which increased in areal coverage between 2006 and 2018. 

The results of this study also show that built-up areas increased by 2.27% which might have 

contributed to the increased peak flow and sediment yield from the catchment. The increase in 

the built-up area creates impervious layers which reduce infiltration and percolation of water 

to the shallow aquifers and this effect supports the increased surface runoff found in the 

Metsimotlhabe River catchment. Anaba et al. (2017) also made the same suspicion in a study 

that was carried in the Murchison Bay watershed, in Uganda.  

The observed decrease of shrubland and forest-dominated vegetation from 2006 to 2018 might 

cause a reduction in infiltration, resulting in increased dominance of overland flow paths in the 

study area, leading to higher surface runoff. Deforestation might have also taken place over the 

study period. According to Guzha et al. (2018), deforestation results in accelerated surface 

runoff and increase mean annual and peak river discharges, which support the findings of this 

study.   
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4.3 SEDIMENTATION ESTIMATION 

Sediment transfer takes place predominantly during storm events (Megnounif et al., 2007). 

Sediment yield simulated by the flow-calibrated ArcSWAT for the entire simulation period 

(2006 to 2018) with both scenarios was related to the corresponding monthly rainfall as shown 

in Figure 16 (the first four years were used as warmup period, hence excluded from the Figure). 

The results show that sediment yield in Scenario 2 (2018-LULC) almost doubled as compared 

to Scenario 1 (Table 10). The two sediment yield hydrographs show three major sediment yield 

peaks which correspond to the high monthly rainfall received by the Metsimotlhabe River 

catchment. The peaks are in April-2010, Nov-2015 and Feb-2017. The highest monthly 

sediment yield occurred in Nov-2015 for both Scenarios, which was 302.5 and 620.6 tonnes in 

Scenario 1 and Scenario 2 respectively. However, this did not correspond to the highest 

monthly rainfall received in the catchment because the highest rainfall was recorded in Feb-

2017.  

Table 10: Total sediment yield period (2010 to 2018) with the two scenarios 

Sediment Yield for the entire simulation 

period; Scenario 1 (2006-LULC) 

Sediment Yield for the entire simulation 

period; Scenario 2 (2018-LULC)  

3 295.12 tonnes 7 157.73 tonnes 

 

 

Figure 16: Monthly rainfall and sediment yield simulated with the two scenarios 
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Megnounif et al. (2007) highlighted that following the dry season, autumn's first rains have 

important impacts, including splashing soil particles on exposed and desiccated soil. This is in 

line with what the results of this study show as it can be seen from Figure 16 that the highest 

sediment yield occurred from the first rains that followed the dry season period with a monthly 

rainfall of about 136.58mm (Nov-2015) whereas the highest monthly rainfall that occurred in 

Feb-2017 (157.21mm) did not produce the highest sediment yield. This rainfall occurred in the 

middle of the rainy season by when the land had some soil moisture and some seasonal 

vegetation which offered protection to the soil against mechanical erosion. Duru (2015) 

supports this finding by highlighting that rainfall influences the rate of relative erosion from 

drainage catchments across diverse climatic areas as it correlates with vegetation type and 

density.  

4.3.1 Effects of LULC on sediment simulation 

It is known that surface runoff is the carrier of all components that affect water quality and as 

it increases, all these components, including sediment transport will increase, depending on the 

activities taking place in the catchment (Anaba et al., 2017). In this study, the total sediment 

yield for the entire simulation period was 3 295.12 tonnes in Scenario 1 and it increased by 

more than 100% (117.2%) in Scenario 2 to about 7 157.73 tonnes (Table 10). This implies that 

soil erosion was much higher in Scenario 2 when the model was run with the 2018-LULC.  

The expansion of the built-up areas is assumed to have increased the contribution of surface 

water to streamflow, leading to more sediment transportation. Moreover, the increase in 

sediment yield might be attributed to the decrease in forest and shrubland cover because 

Chiwera (2015) found a strong negative correlation between a reduction in forest land area and 

sediment yield. Forest vegetation can efficiently intercept and store runoff and sediment, which 

reduces the amount of runoff volume and sediment discharge (Xiaoming et al., 2007). Abari et 

al. (2017) also stress that removing forest canopy cover significantly increases runoff and 

sediment yield. A review carried out by Negese (2021) revealed that the expansion of cultivated 

land at the expense of shrubland, forest land, and grassland in Ethiopia has amplified the rate 

of soil erosion, sediment yield, mean annual streamflow, annual surface runoff, mean wet 

monthly flow, and water yield in the last four decades, which may also be the case in the 

Metsimotlhabe River catchment. 
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4.3.2 Correlation between TSS simulated by the flow-calibrated ArcSWAT and 

TSS derived from Landsat satellite images 

Different algorithms have been developed and widely applied to identify the relationship 

between surface reflectance as recorded by different satellite sensors and the water quality 

(turbidity, TSS and TDS) of waterbodies (Pham et al., 2018; Hariyanto et al., 2017; Quang et 

al., 2017 and others). A total of 15 algorithms were applied to the six Landsat 8 images (2013 

to 2018) that met the selection criteria (Section 3.2.5.2) in estimating the TSS (mg/l) in the 

water that was in the Bokaa reservoir to develop the linear regression models. The TSS 

determined from Landsat images and the observed inflow volume to the Bokaa reservoir were 

used to quantify sediment yield from the Metsimotlhabe River catchment and the findings were 

correlated with the sediment yield obtained by the flow-calibrated ArcSWAT in Scenario 1 

because it performed better than Scenario 2.  

Table 11: Regression models used to retrieve TSS from Landsat images 

No. Regression Algorithm Developed by: R2 

1 TSS = 368.7 ˟ ln(Rrs (B3/B2)) + 31.52 Nurandani et al. (2013) 0.956 

2 TSS = 698.6 ˟ Rrs (B4) – 0.83916 Luan (2016) 0.920 

3 TSS = 602.63 ˟ (0.5157 ˟ Rrs (B4) – 0.0089) + 3.1481 Rodríguez-guzmán & 

Gilbes-santaella (2009) 

0.919 

4 TSS = 2.73 ˟ e 3.11 ˟  Rrs (B4/B3) Pham et al. (2018) 0.897 

Note: B2 = band 2, 482nm; B3 = band 3, 562nm and B4 = band 4, 655nm 

Four regression algorithms produced correlation factors higher than 0.8 (Table 11), with the 

lowest (0.897) being the fourth regression model used and the highest being the model 

developed by Nurandani et al. (2013) with an R2 of 0.95. This algorithm adopted the ratio of 

B3/B2 as the regression parameter. It was utilized by Hariyanto et al. (2017) in a study in East 

Java, Indonesia, where an R2 of 0.684 was obtained. 

With all four algorithms, a very good relationship was achieved between the sediment yield 

simulated by the flow-calibrated ArcSWAT model and sediment yield derived from satellite 

images. The high R2 correlations confirm the high potential of the Landsat band reflectance in 

estimating sediment yield (Pham et al., 2018) from the Metsimotlhabe River catchment and its 

accuracy may be improved by a correlation with the measured sediment yield in the future.  
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A comparison of sediment yield simulated by the flow-calibrated ArcSWAT and the best-

performing regression algorithm (from Nurandani et al., 2013) is shown in Figure 17, together 

with R2 (0.9557) and the linear regression equation that was produced. 

 

 

Figure 17: Correlation between simulated sediment yields (SY) from ArcSWAT and Landsat 

A comparison of sediment yield simulated by the flow-calibrated ArcSWAT and the best-

performed regression algorithm (No.1) is shown in Figure 17 along with squared residual and 

the linear regression equation that was produced. A very good relationship was achieved 

between the sediment yield simulated by the flow-calibrated ArcSWAT and sediment yield 

derived from satellite images. The high correlations confirm the high potential of the Landsat 

band reflectance in estimating sediment yield (Pham et al., 2018) from the Metsimotlhabe River 

catchment and its accuracy may be improved by a correlation with the measured sediment yield 

in the future.  
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5. CONCLUSIONS AND RECOMMENDATIONS  

5.1 CONCLUSIONS 

The LULC of the Metsimotlhabe River catchment was successfully generated from Landsat 

images using PCI Geomatica and ArcGIS because the images had a satisfactory match with the 

ground truth data with a Kappa coefficient of 0.87 and 0.89. The ArcSWAT model was well-

calibrated against the flow as indicated by the statistical analysis, this produced reasonable 

hydrologic simulation results concerning LULC, which could be used by water and 

environmental resources managers and policy and decision-makers.  

The statistical analysis showed that the ArcSWAT model was well-calibrated against the flow. 

The R2 for the calibration, validation and overall periods in Scenario 1 was 0.72, 0.89, and 

0.82, respectively, whereas the R2 for the calibration, validation, and overall periods in 

Scenario 2 were 0.69, 0.86, and 0.78, respectively. Scenario 1 and Scenario 2 produced peak 

simulated flows of 2.295 and 3.372 m3/s, respectively. 

The LULC change that occurred in the Metsimotlhabe River catchment between 2006 and 2018 

was more significant because it produced larger peaks of flow and total sediment yield. These 

changes could be attributed to a 2.27% increase in built-up areas and an 8.0% and 7.89% 

decrease in forest and shrubland areas respectively due to the 2% increase in the annual 

population of people living around the watershed. 

Positive relation with R2 of 0.965 was achieved between the sediment yield simulated from the 

flow-calibrated ArcSWAT and sediment yield derived by applying RS spectral analysis. This 

study highlights the importance and practical applications of RS to overcome data scarcity in 

poorly monitored catchments by employing data acquired directly or indirectly from RS as 

inputs into SWAT. As a result, hydrologists and water resource managers can use RS 

approaches to conduct qualitative and quantitative studies of hydrological processes when data 

is insufficient. 

5.2 RECOMMENDATIONS 

The problem of missing weather data especially rainfall should be addressed by the upgrade of 

the hydrometric measuring stations to automation and by ensuring good maintenance. The 

departments of Meteorological Services and Sanitation & Water Affairs are trying but they are 

constrained by limited budgets and vandalism. Therefore, the government should provide the 
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departments with more funding so that they can invest in upgrading, maintenance and security 

at the gauging stations since they provide important information for the nation. 

More research should be conducted on the effects of different land-use and land cover 

classifications on sediment yield. This would allow the effects of changes in forest cover, 

barren land area, and built-up area on water flow and sediment yield to be quantified on an 

individual basis. 

An in-situ assessment of water quality is required in the field of study to provide the real results 

that will support calibration and validation of ArcSWAT on the sediment amounts generated 

from the watershed. This is critical because without observed data, the simulation is of limited 

use.  
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